%%
%% The LaTeX Companion, 3ed
%%
%% Example 12-40-fig on page II-289 in "Slab serif fonts with math support".
%%
%% Copyright (C) 2022 Frank Mittelbach
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%%
%% See https://www.latex-project.org/lppl.txt for details.
%%

\documentclass{tlc3exa}
\pagestyle{empty}
\setcounter{page}{6}
\setlength\textwidth{351.0pt}

 \setlength \textheight {.44\textheight }
 \renewcommand \rmdefault {cmr} % because examples are normally in Times Roman in the book
 
%StartShownPreambleCommands

 
 % Typeset with pdflatex
 
 \usepackage {amsmath,amssymb,bm}
 
 \usepackage {ccfonts} \usepackage [euler-digits]{eulervm} 
 
 \providecommand \sampletitle {Mathematical typesetting with Concrete and Euler}
 
%StopShownPreambleCommands

\begin{document}

\tracinglostchars=3

\newcommand\ibinom[2]{\genfrac\lbrace\rbrace{0pt}{}{#1}{#2}} % used below

\section*{\sampletitle}

First some large operators both in text:
\smash{$ \iiint\limits_{\mathcal{Q}} f(x,y,z)\,dx\,dy\,dz $}
and
$\prod_{\gamma\in\Gamma_{\widetilde{C}}} \partial(\widetilde{X}_\gamma)$;
and also on display:

\begin{equation}
\begin{split}
%%     This line is deliberately long so as to show
%%     differences in widths; it is a little over the measure
%%     in article/cmr.
\iiiint\limits_{\mathbf{Q}} f(w,x,y,z)\,dw\,dx\,dy\,dz  &\leq
\oint_{\bm{\partial Q}} f' \left( \max \left\lbrace
\frac{\lVert w \rVert}{\lvert w^2 + x^2 \rvert} ;
\frac{\lVert z \rVert}{\lvert y^2 + z^2 \rvert} ;
\frac{\lVert w \oplus z \rVert}{\lVert x \oplus y \rVert}
\right\rbrace\right)
\\
&\precapprox \biguplus_{\mathbb{Q} \Subset \bar{\mathbf{Q}}}
  \left[ f^{\ast} \left(
    \frac{\left\lmoustache\mathbb{Q}(t)\right\rmoustache}
         {\sqrt {1 - t^2}}
  \right)\right]_{t=\alpha}^{t=\vartheta}
  - ( \Delta + \nu - v )^3
\end{split}
\end{equation}

For $x$ in the open interval $ \left] -1, 1 \right[ $
the infinite sum in Equation~\eqref{eq:binom1} is convergent;
however, this does not hold
throughout the closed interval $ \left[ -1, 1 \right] $.
\begin{align}
  (1 - x)^{-k} &=
    1 + \sum_{j=1}^{\infty} (-1)^j \ibinom{k}{j} x^j
    \text{\quad for $k \in \mathbb{N}$; $k \neq 0$.}
    \label{eq:binom1}
\end{align}
\end{document}