The outputs produced by teal
modules, like graphs or
tables, are created by the module developer and look a certain way. It
is hard to design an output that will satisfy every possible user, so
the form of the output should be considered a default value that can be
customized. Here we describe the concept of decoration,
enabling the app developer to tailor outputs to their specific
requirements without rewriting the original module code.
The decoration process is build upon transformation procedures,
introduced in teal
. While transformators
are
meant to edit module’s input, decorators are meant to adjust the
module’s output. To distinguish the difference, modules in
teal.modules.clinical
have 2 separate parameters:
transformators
and decorators
.
To get a complete understanding refer the following vignettes:
It is important to note which output objects from a given module can be decorated. The module function documentation’s Decorating Module section has this information.
You can also refer the table shown below to know which module outputs can be decorated.
Module | Outputs (Class) |
---|---|
tm_a_gee |
table (ElementaryTable) |
tm_a_mmrm |
lsmeans_table (TableTree), lsmeans_plot (ggplot), covariance_table (ElementaryTable), fixed_effects_table (ElementaryTable), diagnostic_table (ElementaryTable), diagnostic_plot (ggplot) |
tm_g_barchart_simple |
plot (ggplot) |
tm_g_ci |
plot (ggplot) |
tm_g_forest_rsp |
plot (ggplot) |
tm_g_forest_tte |
plot (ggplot) |
tm_g_ipp |
plot (ggplot) |
tm_g_km |
plot (ggplot) |
tm_g_lineplot |
plot (ggplot) |
tm_g_pp_adverse_events |
table (datatables), plot (ggplot) |
tm_g_pp_patient_timeline |
plot (ggplot) |
tm_g_pp_therapy |
plot (ggplot), table (datatables) |
tm_g_pp_vitals |
plot (ggplot) |
tm_t_abnormality |
table (TableTree) |
tm_t_abnormality_by_worst_grade |
table (TableTree) |
tm_t_ancova |
table (TableTree) |
tm_t_binary_outcome |
table (TableTree) |
tm_t_coxreg |
table (TableTree) |
tm_t_events |
table (TableTree) |
tm_t_events_by_grade |
table (TableTree) |
tm_t_events_patyear |
table (ElementaryTable) |
tm_t_events_summary |
table (TableTree) |
tm_t_exposure |
table (ElementaryTable) |
tm_t_logistic |
table (TableTree) |
tm_t_mult_events |
table (TableTree) |
tm_t_pp_basic_info |
table (datatables) |
tm_t_pp_laboratory |
table (datatables) |
tm_t_pp_medical_history |
table (TableTree) |
tm_t_pp_prior_medication |
table (datatables) |
tm_t_shift_by_arm |
table (TableTree) |
tm_t_shift_by_arm_by_worst |
table (TableTree) |
tm_t_shift_by_grade |
table (TableTree) |
tm_t_smq |
table (TableTree) |
tm_t_summary |
table (TableTree) |
tm_t_summary_by |
table (TableTree) |
tm_t_tte |
table (TableTree) |
Also, note that there are three different types of objects that can be decorated:
listing_df
, ElementaryTable
,
TableTree
ggplot
datatables
Tip: A general tip before trying to decorate the output from the module is to copy the reproducible code and running them in a separate R session to quickly iterate the decoration you want.
listing_df
, ElementaryTable
,
TableTree
Here’s an example to showcase how you can edit an output of class
listing_df
, ElementaryTable
, or
TableTree
. All these classes are extension of objects
created using rtables
and can be modified with the help of
rtables
modifiers like
rtables::insert_rrow
.
library(teal.modules.clinical)
data <- within(teal_data(), {
library(dplyr)
ADSL <- tmc_ex_adsl |>
mutate(
ITTFL = factor("Y") |> with_label("Intent-To-Treat Population Flag")
) |>
mutate(DTHFL = case_when(!is.na(DTHDT) ~ "Y", TRUE ~ "") |> with_label("Subject Death Flag"))
ADLB <- tmc_ex_adlb |>
mutate(AVISIT == forcats::fct_reorder(AVISIT, AVISITN, min)) |>
mutate(
ONTRTFL = case_when(
AVISIT %in% c("SCREENING", "BASELINE") ~ "",
TRUE ~ "Y"
) |> with_label("On Treatment Record Flag")
)
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
insert_rrow_decorator <- function(default_caption = "I am a good new row") {
teal_transform_module(
label = "New row",
ui = function(id) {
shiny::textInput(shiny::NS(id, "new_row"), "New row", value = default_caption)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
data() |>
within(
{
table <- rtables::insert_rrow(table, rtables::rrow(new_row))
},
new_row = input$new_row
)
})
})
}
)
}
app <- init(
data = data,
modules = modules(
tm_t_abnormality(
label = "tm_t_abnormality",
dataname = "ADLB",
arm_var = choices_selected(
choices = variable_choices("ADSL", subset = c("ARM", "ARMCD")),
selected = "ARM"
),
add_total = FALSE,
by_vars = choices_selected(
choices = variable_choices("ADLB", subset = c("LBCAT", "PARAM", "AVISIT")),
selected = c("LBCAT", "PARAM"),
keep_order = TRUE
),
baseline_var = choices_selected(
variable_choices("ADLB", subset = "BNRIND"),
selected = "BNRIND", fixed = TRUE
),
grade = choices_selected(
choices = variable_choices("ADLB", subset = "ANRIND"),
selected = "ANRIND",
fixed = TRUE
),
abnormal = list(low = "LOW", high = "HIGH"),
exclude_base_abn = FALSE,
decorators = list(table = insert_rrow_decorator("I am a good new row"))
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
ggplot
Here’s an example to showcase how you can edit an output of class
ggplot
. You can extend them using ggplot2
functions.
library(teal.modules.clinical)
data <- teal_data(join_keys = default_cdisc_join_keys[c("ADSL", "ADRS")])
data <- within(data, {
require(nestcolor)
ADSL <- rADSL
ADTTE <- tmc_ex_adtte
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ggplot_caption_decorator <- function(default_caption = "I am a good decorator") {
teal_transform_module(
label = "Caption",
ui = function(id) {
shiny::textInput(shiny::NS(id, "title"), "Plot Title", value = default_caption)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
data() |>
within(
{
plot <- plot +
ggplot2::ggtitle(title) +
cowplot::theme_cowplot()
},
title = input$title
)
})
})
}
)
}
app <- init(
data = data,
modules = modules(
tm_g_km(
label = "tm_g_km",
dataname = "ADTTE",
arm_var = choices_selected(
variable_choices("ADSL", c("ARM", "ARMCD", "ACTARMCD")),
"ARM"
),
paramcd = choices_selected(
value_choices("ADTTE", "PARAMCD", "PARAM"),
"OS"
),
arm_ref_comp = list(
ACTARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")),
ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination"))
),
strata_var = choices_selected(
variable_choices("ADSL", c("SEX", "BMRKR2")),
"SEX"
),
facet_var = choices_selected(
variable_choices("ADSL", c("SEX", "BMRKR2")),
NULL
),
decorators = list(plot = ggplot_caption_decorator())
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}
datatables
Here’s an example to showcase how you can edit an output of class
datatables
. Please refer the helper functions
of the DT
package to learn more about extending the
datatables
objects.
library(teal.modules.clinical)
data <- teal_data(join_keys = default_cdisc_join_keys[c("ADSL", "ADRS")])
data <- within(data, {
ADSL <- rADSL
ADLB <- tmc_ex_adlb |>
mutate(AVISIT == forcats::fct_reorder(AVISIT, AVISITN, min)) |>
mutate(
ONTRTFL = case_when(
AVISIT %in% c("SCREENING", "BASELINE") ~ "",
TRUE ~ "Y"
) |> with_label("On Treatment Record Flag")
)
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
dt_table_decorator <- function(color1 = "pink", color2 = "lightblue") {
teal_transform_module(
label = "Table color",
ui = function(id) {
selectInput(
NS(id, "color"),
"Table Color",
choices = c("white", color1, color2),
selected = "Default"
)
},
server = function(id, data) {
moduleServer(id, function(input, output, session) {
reactive({
data() |> within(
{
table <- DT::formatStyle(
table,
columns = attr(table$x, "colnames")[-1],
target = "row",
backgroundColor = color
)
},
color = input$color
)
})
})
}
)
}
app <- init(
data = data,
modules = modules(
tm_t_pp_laboratory(
label = "tm_t_pp_laboratory",
dataname = "ADLB",
patient_col = "USUBJID",
paramcd = choices_selected(
choices = variable_choices("ADLB", "PARAMCD"),
selected = "PARAMCD"
),
param = choices_selected(
choices = variable_choices("ADLB", "PARAM"),
selected = "PARAM"
),
timepoints = choices_selected(
choices = variable_choices("ADLB", "ADY"),
selected = "ADY"
),
anrind = choices_selected(
choices = variable_choices("ADLB", "ANRIND"),
selected = "ANRIND"
),
aval_var = choices_selected(
choices = variable_choices("ADLB", "AVAL"),
selected = "AVAL"
),
avalu_var = choices_selected(
choices = variable_choices("ADLB", "AVALU"),
selected = "AVALU"
),
decorators = list(table = dt_table_decorator())
)
)
)
if (interactive()) {
shinyApp(app$ui, app$server)
}