## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----message=FALSE------------------------------------------------------------ library(rstanemax) library(dplyr) library(ggplot2) set.seed(12345) ## ----results="hide"----------------------------------------------------------- data(exposure.response.sample) fit.emax <- stan_emax(response ~ exposure, data = exposure.response.sample, # the next line is only to make the example go fast enough chains = 2, iter = 1000, seed = 12345 ) ## ----------------------------------------------------------------------------- fit.emax ## ----plot_example, fig.show='hold'-------------------------------------------- plot(fit.emax) ## ----plot_example_log, fig.show='hold'---------------------------------------- plot(fit.emax) + scale_x_log10() + expand_limits(x = 1) ## ----------------------------------------------------------------------------- class(extract_stanfit(fit.emax)) ## ----------------------------------------------------------------------------- response.pred <- posterior_predict(fit.emax, newdata = c(0, 100, 1000), returnType = "tibble") response.pred %>% select(mcmcid, exposure, respHat, response) ## ----------------------------------------------------------------------------- resp.pred.quantile <- posterior_predict_quantile(fit.emax, newdata = seq(0, 5000, by = 100)) resp.pred.quantile ## ----------------------------------------------------------------------------- obs.formatted <- extract_obs_mod_frame(fit.emax) ## ----plot_with_pp, fig.show='hold'-------------------------------------------- ggplot(resp.pred.quantile, aes(exposure, ci_med)) + geom_line() + geom_ribbon(aes(ymin = ci_low, ymax = ci_high), alpha = .5) + geom_ribbon(aes(ymin = pi_low, ymax = pi_high), alpha = .2) + geom_point( data = obs.formatted, aes(y = response) ) + labs(y = "response") ## ----------------------------------------------------------------------------- posterior.fit.emax <- extract_param(fit.emax) posterior.fit.emax ## ----results="hide"----------------------------------------------------------- data(exposure.response.sample) fit.emax.sigmoidal <- stan_emax(response ~ exposure, data = exposure.response.sample, gamma.fix = NULL, # the next line is only to make the example go fast enough chains = 2, iter = 1000, seed = 12345 ) ## ----------------------------------------------------------------------------- fit.emax.sigmoidal ## ----plot_with_gamma_fix, fig.width = 6, fig.height = 4, fig.show='hold'------ exposure_pred <- seq(min(exposure.response.sample$exposure), max(exposure.response.sample$exposure), length.out = 100 ) pred1 <- posterior_predict_quantile(fit.emax, exposure_pred) %>% mutate(model = "Emax") pred2 <- posterior_predict_quantile(fit.emax.sigmoidal, exposure_pred) %>% mutate(model = "Sigmoidal Emax") pred <- bind_rows(pred1, pred2) ggplot(pred, aes(exposure, ci_med, color = model, fill = model)) + geom_line() + geom_ribbon(aes(ymin = ci_low, ymax = ci_high), alpha = .3) + geom_ribbon(aes(ymin = pi_low, ymax = pi_high), alpha = .1, color = NA) + geom_point( data = exposure.response.sample, aes(exposure, response), color = "black", fill = NA, size = 2 ) + labs(y = "response") ## ----results="hide"----------------------------------------------------------- data(exposure.response.sample.with.cov) test.data <- mutate(exposure.response.sample.with.cov, SEX = ifelse(cov2 == "B0", "MALE", "FEMALE") ) fit.cov <- stan_emax( formula = resp ~ conc, data = test.data, param.cov = list(emax = "SEX"), # the next line is only to make the example go fast enough chains = 2, iter = 1000, seed = 12345 ) ## ----plot_with_cov, fig.width = 6, fig.height = 4, fig.show='hold'------------ fit.cov plot(fit.cov) ## ----compare_emax, fig.show='hold'-------------------------------------------- fit.cov.posterior <- extract_param(fit.cov) emax.posterior <- fit.cov.posterior %>% select(mcmcid, SEX, emax) %>% tidyr::pivot_wider(names_from = SEX, values_from = emax) %>% mutate(delta = FEMALE - MALE) ggplot2::qplot(delta, data = emax.posterior, bins = 30) + ggplot2::labs(x = "emax[FEMALE] - emax[MALE]") # Credible interval of delta quantile(emax.posterior$delta, probs = c(0.025, 0.05, 0.5, 0.95, 0.975)) # Posterior probability of emax[FEMALE] < emax[MALE] sum(emax.posterior$delta < 0) / nrow(emax.posterior)