
Package ‘ltertools’
February 21, 2025

Type Package

Title Tools Developed by the Long Term Ecological Research Community

Version 1.2.0

Date 2025-02-21

Maintainer Nicholas Lyon <lyon@nceas.ucsb.edu>

Description Set of the data science tools created by various members of the Long Term
Ecological Research (LTER) community. These functions were initially written largely
as standalone operations and have later been aggregated into this package.

License BSD_3_clause + file LICENSE

Encoding UTF-8

Language en-US

LazyData true

URL https://lter.github.io/ltertools/

BugReports https://github.com/lter/ltertools/issues

RoxygenNote 7.3.1

Depends R (>= 3.5)

Imports dplyr, generics, ggplot2, magrittr, purrr, readxl, RJSONIO,
stats, stringr, tidyr, utils

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Nicholas Lyon [aut, cre] (https://njlyon0.github.io/),
Angel Chen [aut] (https://angelchen7.github.io),
Miguel C. Leon [ctb] (https://luquillo.lter.network/),
National Science Foundation [fnd] (NSF 1929393, 09/01/2019 -
08/31/2024),

University of California, Santa Barbara [cph]

Repository CRAN

Date/Publication 2025-02-21 15:40:06 UTC

1

https://lter.github.io/ltertools/
https://github.com/lter/ltertools/issues

2 begin_key

Contents

begin_key . 2
convert_temp . 3
cv . 4
expand_key . 4
harmonize . 6
lter_sites . 7
make_json . 8
read . 9
site_subset . 10
site_timeline . 11
solar_day_info . 11

Index 13

begin_key Generate the Skeleton of a Column Key

Description

Creates the start of a ’column key’ for harmonizing data. A column key includes a column for the
file names to be harmonized into a single data object as well as a column for the column names
in those files. Finally, it includes a column indicating the tidied name that corresponds with each
raw column name. Harmonization can accept this key object and use it to rename all raw column
names–in a reproducible way–to standardize across datasets. Currently supports raw files of the
following formats: CSV, TXT, XLS, and XLSX

Usage

begin_key(
raw_folder = NULL,
data_format = c("csv", "txt", "xls", "xlsx"),
guess_tidy = FALSE

)

Arguments

raw_folder (character) folder / folder path containing data files to include in key

data_format (character) file extensions to identify within the raw_folder. Default behavior
is to search for all supported file types.

guess_tidy (logical) whether to attempt to "guess" what the tidy name equivalent should
be for each raw column name. This is accomplished via coercion to lowercase
and removal of special character/repeated characters. If FALSE (the default) the
"tidy_name" column is returned empty

convert_temp 3

Value

(dataframe) skeleton of column key

Examples

Generate two simple tables
Dataframe 1
df1 <- data.frame("xx" = c(1:3),

"unwanted" = c("not", "needed", "column"),
"yy" = letters[1:3])

Dataframe 2
df2 <- data.frame("LETTERS" = letters[4:7],

"NUMBERS" = c(4:7),
"BONUS" = c("plantae", "animalia", "fungi", "protista"))

Generate a local folder for exporting
temp_folder <- tempdir()

Export both files to that folder
utils::write.csv(x = df1, file = file.path(temp_folder, "df1.csv"), row.names = FALSE)
utils::write.csv(x = df2, file = file.path(temp_folder, "df2.csv"), row.names = FALSE)

Generate a column key with "guesses" at tidy column names
ltertools::begin_key(raw_folder = temp_folder, data_format = "csv", guess_tidy = TRUE)

convert_temp Convert Temperature Values

Description

Converts a given set of temperature values from one unit to another

Usage

convert_temp(value = NULL, from = NULL, to = NULL)

Arguments

value (numeric) temperature values to convert

from (character) starting units of the value, not case sensitive.

to (character) units to which to convert, not case sensitive.

Value

(numeric) converted temperature values

4 expand_key

Examples

Convert from Fahrenheit to Celsius
convert_temp(value = 32, from = "Fahrenheit", to = "c")

cv Calculate Coefficient of Variation

Description

Computes the coefficient of variation (CV), by dividing the standard deviation (SD) by the arith-
metic mean of a set of numbers. If na_rm is TRUE then missing values are removed before calculation
is completed

Usage

cv(x, na_rm = TRUE)

Arguments

x (numeric) vector of numbers for which to calculate CV

na_rm (logical) whether to remove missing values from both average and SD calcula-
tion

Value

(numeric) coefficient of variation

Examples

Convert from Fahrenheit to Celsius
cv(x = c(4, 5, 6, 4, 5, 5), na_rm = TRUE)

expand_key Generate the Skeleton of a Column Key for Only New Data Files

Description

Data discovery–and harmonization–is an iterative process. For those already depending upon a
column key and the harmonize function, it can be cumbersome to add rows to an existing column
key. This function formats rows for an existing column key for only datasets that are not already
(A) in the column key or (B) in the harmonized data table.

expand_key 5

Usage

expand_key(
key = NULL,
raw_folder = NULL,
harmonized_df = NULL,
data_format = c("csv", "txt", "xls", "xlsx"),
guess_tidy = FALSE

)

Arguments

key (dataframe) key object including a "source", "raw_name" and "tidy_name" col-
umn. Additional columns are allowed but ignored

raw_folder (character) folder / folder path containing data files to include in key

harmonized_df (dataframe) harmonized data table produced with the current version of the col-
umn key. Must include a "source" column but other columns are ignored.

data_format (character) file extensions to identify within the raw_folder. Default behavior
is to search for all supported file types.

guess_tidy (logical) whether to attempt to "guess" what the tidy name equivalent should
be for each raw column name. This is accomplished via coercion to lowercase
and removal of special character/repeated characters. If FALSE (the default) the
"tidy_name" column is returned empty

Value

(dataframe) skeleton of rows to add to column key for data sources not already in harmonized data
table

Examples

Generate two simple tables
Dataframe 1
df1 <- data.frame("xx" = c(1:3),

"unwanted" = c("not", "needed", "column"),
"yy" = letters[1:3])

Dataframe 2
df2 <- data.frame("LETTERS" = letters[4:7],

"NUMBERS" = c(4:7),
"BONUS" = c("plantae", "animalia", "fungi", "protista"))

Generate a local folder for exporting
temp_folder <- tempdir()

Export both files to that folder
utils::write.csv(x = df1, file = file.path(temp_folder, "df1.csv"), row.names = FALSE)
utils::write.csv(x = df2, file = file.path(temp_folder, "df2.csv"), row.names = FALSE)

Generate a column key with "guesses" at tidy column names
key1 <- ltertools::begin_key(raw_folder = temp_folder, data_format = "csv", guess_tidy = TRUE)

6 harmonize

Harmonize the data
harmony <- ltertools::harmonize(key = key1, raw_folder = temp_folder)

Make a new data file
df3 <- data.frame("xx" = c(10:15),

"letters" = letters[10:15])

Export this locally to the temp folder too
utils::write.csv(x = df3, file = file.path(temp_folder, "df3.csv"), row.names = FALSE)

Identify what needs to be added to the existing column key
ltertools::expand_key(key = key1, raw_folder = temp_folder, harmonized_df = harmony,

data_format = "csv", guess_tidy = TRUE)

harmonize Harmonize Data via a Column Key

Description

A "column key" is meant to streamline harmonization of disparate datasets. This key must include
three columns containing: (1) the name of each raw data file to be harmonized, (2) the name of all
of the columns in each of those files, and (3) the "tidy name" that corresponds to each raw column
name. This function accepts that key and the path to a folder containing all raw data files included
in the key. Each dataset is then read in and the original column names are replaced with their
respective "tidy_name" indicated in the key. Once this has been done to all files, a single dataframe
is returned with only columns indicated in the column name. Currently the following file formats
are supported for the raw data: CSV, TXT, XLS, and XLSX

Note that raw column names without an associated tidy name in the key are removed. We recom-
mend using the begin_key function in this package to generate the skeleton of the key to make
achieving the required structure simpler.

Usage

harmonize(
key = NULL,
raw_folder = NULL,
data_format = c("csv", "txt", "xls", "xlsx"),
quiet = TRUE

)

Arguments

key (dataframe) key object including a "source", "raw_name" and "tidy_name" col-
umn. Additional columns are allowed but ignored

raw_folder (character) folder / folder path containing data files to include in key

lter_sites 7

data_format (character) file extensions to identify within the raw_folder. Default behavior
is to search for all supported file types.

quiet (logical) whether to suppress certain non-warning messages. Defaults to TRUE

Value

(dataframe) harmonized dataframe including all columns defined in the "tidy_name" column of the
key object

Examples

Generate two simple tables
Dataframe 1
df1 <- data.frame("xx" = c(1:3),

"unwanted" = c("not", "needed", "column"),
"yy" = letters[1:3])

Dataframe 2
df2 <- data.frame("LETTERS" = letters[4:7],

"NUMBERS" = c(4:7),
"BONUS" = c("plantae", "animalia", "fungi", "protista"))

Generate a local folder for exporting
temp_folder <- tempdir()

Export both files to that folder
utils::write.csv(x = df1, file = file.path(temp_folder, "df1.csv"), row.names = FALSE)
utils::write.csv(x = df2, file = file.path(temp_folder, "df2.csv"), row.names = FALSE)

Generate a column key object manually
key_obj <- data.frame("source" = c(rep("df1.csv", 3),

rep("df2.csv", 3)),
"raw_name" = c("xx", "unwanted", "yy",

"LETTERS", "NUMBERS", "BONUS"),
"tidy_name" = c("numbers", NA, "letters",

"letters", "numbers", "kingdom"))

Use that to harmonize the 'raw' files we just created
ltertools::harmonize(key = key_obj, raw_folder = temp_folder, data_format = "csv")

lter_sites Long Term Ecological Research Site Information

Description

There are currently 28 field sites involved with the Long Term Ecological Research (LTER) net-
work. These sites occupy a range of habitats and were started / are renewed on site-specific time-
lines. To make this information more readily available to interested parties, this data object summa-
rizes the key components of each site in an easy-to-use data format.

8 make_json

Usage

lter_sites

Format

Dataframe with 8 columns and 32 rows

name Full name of the LTER site

code Abbreviation (typically three letters) of the site name

habitat Simplified habitat designation of the site (or "mixed" for more complex habitat contexts)

start_year Year of initial funding by NSF as an official LTER site

end_year End of current funding cycle grant

latitude Degrees latitude of site

longitude Degrees longitude of site

site_url Website URL for the site

Source

Long Term Ecological Research Network Office. https://lternet.edu/site/

make_json Make a JSON File with Specified Contents

Description

Creates a JSON (JavaScript Object Notation) file containing the specified name/value pairs. These
files are hugely flexible and interpretable by a wide variety of coding languages and thus extremely
useful in many contexts. This function is meant to assist those who wish to use JSON files to store
user-specific information (e.g., email addresses, absolute file paths, etc.) in collaborative contexts.

Usage

make_json(x = NULL, file = NULL, git_ignore = FALSE)

Arguments

x (character) named vector from which to generate JSON content. Vector elements
become JSON values and the vector element names become JSON names. A
named vector can be created like so: c("greeting" = "hello", "farewell"
= "goodbye"). The characters on the left of the equal signs are names and the
characters on the right are values.

file (character) name of JSON file to create with contents provided to x. Must end
with ".json"

git_ignore (logical) whether to add the file name (defined in file) to the ’.gitignore’ if one
exists. Defaults to FALSE

read 9

Value

Nothing. Called for side-effects (i.e., creating JSON file)

Examples

Create contents
my_info <- c("data_path" = "Users/me/documents/my_project/data")

Generate a local folder for exporting
temp_folder <- tempdir()

Create a JSON with those contents
make_json(x = my_info, file = file.path(temp_folder, "user.json"), git_ignore = FALSE)

Read it back in
(user_info <- RJSONIO::fromJSON(content = file.path(temp_folder, "user.json")))

read Read Data from Folder

Description

Reads in all data files of specified types found in the designated folder. Returns a list with one
element for each data file. Currently supports CSV, TXT, XLS, and XLSX

Usage

read(raw_folder = NULL, data_format = c("csv", "txt", "xls", "xlsx"))

Arguments

raw_folder (character) folder / folder path containing data files to read

data_format (character) file extensions to identify within the raw_folder. Default behavior
is to search for all supported file types.

Value

(list) data found in specified folder of specified file format(s)

Examples

Generate two simple tables
Dataframe 1
df1 <- data.frame("xx" = c(1:3),

"unwanted" = c("not", "needed", "column"),
"yy" = letters[1:3])

Dataframe 2

10 site_subset

df2 <- data.frame("LETTERS" = letters[4:7],
"NUMBERS" = c(4:7),
"BONUS" = c("plantae", "animalia", "fungi", "protista"))

Generate a local folder for exporting
temp_folder <- tempdir()

Export both files to that folder
utils::write.csv(x = df1, file = file.path(temp_folder, "df1.csv"), row.names = FALSE)
utils::write.csv(x = df2, file = file.path(temp_folder, "df2.csv"), row.names = FALSE)

Read in all CSV files in that folder
read(raw_folder = temp_folder, data_format = "csv")

site_subset Subsets the LTER Site Information Table by Site Codes and Habitats

Description

Subsets the information on long term ecological research (LTER) sites based on user-specified site
codes (i.e., three letter abbreviations), and/or desired habitats. See lter_sites for the full set of
site information

Usage

site_subset(sites = NULL, habitats = NULL)

Arguments

sites (character) three letter site code(s) identifying site(s) of interest

habitats (character) habitat(s) of interest. See unique(lter_sites$habitat)

Value

(dataframe) complete site information (8 columns) for all sites that meet the provided site code
and/or habitat criteria

site_timeline 11

site_timeline Create a Timeline of Site(s) that Meet Criteria

Description

Creates a ggplot2 plot of all sites that meet the user-specified site code (i.e., three letter abbreviation)
and/or habitat criteria. See lter_sites for the full set of site information including accepted site
codes and habitat designations (unrecognized entries will trigger a warning and be ignored). Lines
are grouped and colored by habitat to better emphasize possible similarities among sites

Usage

site_timeline(sites = NULL, habitats = NULL, colors = NULL)

Arguments

sites (character) three letter site code(s) identifying site(s) of interest

habitats (character) habitat(s) of interest. See unique(lter_sites$habitat)

colors (character) colors to assign to the timelines expressed as a hexadecimal (e.g,
#00FF00). Note there must be as many colors as habitats included in the graph

Value

(ggplot2) plot object of timeline of site(s) that meet user-specified criteria

Examples

Make the full timeline of all sites with default colors by supplying no arguments
site_timeline()

Or make a timeline of only sites that meet certain criteria
site_timeline(habitats = c("grassland", "forest"))

solar_day_info Identify Solar Day Information

Description

For all days between the specified start and end date, identify the time of sunrise, sunset, and solar
noon (in UTC) as well as the day length. The idea for this function was contributed by Miguel C.
Leon and a Python equivalent lives in the Luquillo site’s LUQ-general-utils GitHub repository.

https://luquillo.lter.network/
https://luquillo.lter.network/
https://github.com/LUQ-LTER/LUQ-general-utils

12 solar_day_info

Usage

solar_day_info(
lat = NULL,
lon = NULL,
start_date = NULL,
end_date = NULL,
quiet = FALSE

)

Arguments

lat (numeric) latitude coordinate for which to find day length

lon (numeric) longitude coordinate for which to find day length

start_date (character) starting date in ’YYYY-MM-DD’ format

end_date (character) ending date in ’YYYY-MM-DD’ format

quiet (logical) whether to suppress certain non-warning messages. Defaults to TRUE

Value

(dataframe) table of 6 columns and a number of rows equal to the number of days between the
specified start and end dates (inclusive). Columns contain: (1) date, (2) sunrise time, (3) sunset
time, (4) solar noon, (5) day length, and (6) time zone of columns 2 to 4.

Examples

Not run:
Identify day information in Santa Barbara (California) for one week
solar_day_info(lat = 34.416857, lon = -119.712777,

start_date = "2022-02-07", end_date = "2022-02-12",
quiet = TRUE)

End(Not run)

Index

∗ datasets
lter_sites, 7

begin_key, 2

convert_temp, 3
cv, 4

expand_key, 4

harmonize, 6

lter_sites, 7

make_json, 8

read, 9

site_subset, 10
site_timeline, 11
solar_day_info, 11

13

	begin_key
	convert_temp
	cv
	expand_key
	harmonize
	lter_sites
	make_json
	read
	site_subset
	site_timeline
	solar_day_info
	Index

