## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----sim_data_example--------------------------------------------------------- library(iClusterVB) # sim_data comes with the iClusterVB package. dat1 <- list( gauss_1 = sim_data$continuous1_data[c(1:20, 61:80, 121:140, 181:200), 1:75], gauss_2 = sim_data$continuous2_data[c(1:20, 61:80, 121:140, 181:200), 1:75], poisson_1 = sim_data$count_data[c(1:20, 61:80, 121:140, 181:200), 1:75]) dist <- c( "gaussian", "gaussian", "poisson" ) ## ----model-------------------------------------------------------------------- fit_iClusterVB <- iClusterVB( mydata = dat1, dist = dist, K = 4, initial_method = "VarSelLCM", VS_method = 1, max_iter = 50 ) ## ----summary------------------------------------------------------------------ # We can obtain a summary using summary() summary(fit_iClusterVB) ## ----plots, fig.width=6, fig.height=6----------------------------------------- plot(fit_iClusterVB) ## ----piplot, fig.width=6, fig.height=6---------------------------------------- # The `piplot` function can be used to visualize the probability of inclusion piplot(fit_iClusterVB) ## ----chmap, echo = TRUE, fig.width=6, fig.height=6---------------------------- # The `chmap` function can be used to display heat maps for each data view chmap(fit_iClusterVB, rho = 0, cols = c("green", "blue", "purple", "red"), scale = "none")