## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE ) # Okabi-Ito colours options( ggplot2.discrete.colour = c("#D55E00", "#0072B2", "#009E73", "#CC79A7", "#E69F00", "#56B4E9", "#F0E442") ) ## ----setup-------------------------------------------------------------------- library(cricketdata) library(dplyr) library(ggplot2) ## ----getdata, eval=FALSE, echo=FALSE------------------------------------------ # # Avoid downloading the data when the package is checked by CRAN. # # This only needs to be run once to store the data locally # wt20 <- fetch_cricinfo("T20", "Women", "Bowling") # menODI <- fetch_cricinfo("ODI", "Men", "Batting", type = "innings", country = "Australia") # Indfielding <- fetch_cricinfo("Test", "Men", "Fielding", country = "India") # meg_lanning_id <- find_player_id("Meg Lanning")$ID # MegLanning <- fetch_player_data(meg_lanning_id, "ODI") |> # mutate(NotOut = (Dismissal == "not out")) |> # mutate(NotOut = tidyr::replace_na(NotOut, FALSE)) # # saveRDS(wt20, here::here("inst/extdata/wt20.rds")) # saveRDS(menODI, here::here("inst/extdata/menODI.rds")) # saveRDS(Indfielding, here::here("inst/extdata/Indfielding.rds")) # saveRDS(MegLanning, here::here("inst/extdata/MegLanning.rds")) ## ----loaddata, include=FALSE-------------------------------------------------- wt20 <- readRDS("../inst/extdata/wt20.rds") menODI <- readRDS("../inst/extdata/menODI.rds") Indfielding <- readRDS("../inst/extdata/Indfielding.rds") MegLanning <- readRDS("../inst/extdata/MegLanning.rds") ## ----woment20, message=FALSE, echo = FALSE------------------------------------ wt20 |> head() |> knitr::kable(digits = 2) ## ----woment20graph, fig.width=10, fig.height=8-------------------------------- wt20 |> filter(Wickets > 20, !is.na(Country)) |> ggplot(aes(y = StrikeRate, x = Country)) + geom_boxplot() + geom_point(alpha = 0.3, col = "blue") + ggtitle("Women T20: Strike Rates") + ylab("Balls per wicket") + coord_flip() ## ----menodi, message=FALSE, echo=FALSE---------------------------------------- menODI |> head() |> knitr::kable() ## ----menodigraph, warning=FALSE, message=FALSE-------------------------------- menODI |> ggplot(aes(y = Runs, x = Date)) + geom_point(alpha = 0.2, col = "#D55E00") + geom_smooth() + ggtitle("Australia Men ODI: Runs per Innings") ## ----indiafielding, echo=FALSE------------------------------------------------ Indfielding |> head() |> knitr::kable() ## ----indiafieldinggraph------------------------------------------------------- Indfielding |> mutate(wktkeeper = (CaughtBehind > 0) | (Stumped > 0)) |> ggplot(aes(x = Matches, y = Dismissals, col = wktkeeper)) + geom_point() + ggtitle("Indian Men Test Fielding") ## ----meglanning, echo=FALSE--------------------------------------------------- MegLanning |> head() |> knitr::kable() ## ----meglanninggraph---------------------------------------------------------- # Compute batting average MLave <- MegLanning |> summarise( Innings = sum(!is.na(Runs)), Average = sum(Runs, na.rm = TRUE) / (Innings - sum(NotOut, na.rm=TRUE)) ) |> pull(Average) names(MLave) <- paste("Average =", round(MLave, 2)) # Plot ODI scores ggplot(MegLanning) + geom_hline(aes(yintercept = MLave), col = "gray") + geom_point(aes(x = Date, y = Runs, col = NotOut)) + ggtitle("Meg Lanning ODI Scores") + scale_y_continuous(sec.axis = sec_axis(~., breaks = MLave))