Package 'TUvalues'

January 20, 2025

Type Package

Title Tools for Calculating Allocations in Game Theory using Exact and Approximated Methods

Version 0.1.0

Description The main objective of cooperative games is to allocate a good among the agents involved. This package includes the most well-known allocation rules, i.e., the Shapley value, the Banzhaf value, the egalitarian rule, and the equal surplus division value. In addition, it considers the point of view of a priori unions (situations in which agents can form coalitions). For this purpose, the package includes the Owen value, the Banzhaf-Owen value, and the corresponding extensions of the egalitarian rules. All these values can be calculated exactly or estimated by sampling.

License AGPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

URL https://github.com/mariaguilleng/TUvalues

BugReports https://github.com/mariaguilleng/TUvalues/issues

Imports utils, gtools

NeedsCompilation no

Author Maria D. Guillen [cre, aut] (<https://orcid.org/0000-0002-2445-5654>), Juan Carlos Gonçalves [aut] (<https://orcid.org/0000-0002-0867-0004>)

Maintainer Maria D. Guillen <maria.guilleng@umh.es>

Repository CRAN

Date/Publication 2024-09-10 09:30:02 UTC

Contents

banzhaf									 									 			2
banzhaf_appro									 •					•							3
banzhaf_appro_fun	с		•	•	•	•		•	 •			•	•	•		•		 			4

banzhaf

banzhaf_appro_vector	4
banzhaf_exact	5
banzhaf_owen	5
banzhaf_owen_appro	6
banzhaf_owen_exact	7
coalitions	7
egalitarian	8
equal_surplus_division	8
owen	9
owen_appro	10
owen_exact	11
predecessor	11
shapley	12
shapley_appro	12
shapley_exact	13
	14

Index

```
banzhaf
```

Banzhaf value

Description

Calculate the Banzhaf value

Usage

```
banzhaf(
   characteristic_func,
   method = "exact",
   n_rep = 10000,
   n_players = 0,
   replace = FALSE
)
```

Arguments

characteristic_func

	The valued function defined on the subsets of the number of players.
method	Method used to calculate the Banzhaf value. Valid methods are: exact for the exact calculation or appro for approximated polynomial calculation based on sampling.
n_rep	Only used if method is appro. The number of iterations to perform in the approximated calculation $% \left({{\left[{{{\left[{{\left[{\left[{{\left[{{\left[{{\left[{$
n_players	Only used if characteristic_func is a function. The number of players in the game.
replace	should sampling be with replacement?

banzhaf_appro

Value

The Banzhaf value for each player

Examples

```
n <- 10
v <- function(coalition) {
if (length(coalition) > n/2) {
   return(1)
} else {
   return(0)
}
banzhaf(v, method = "exact", n_players = n)
banzhaf(v, method = "appro", n_rep = 4000, n_players = n, replace = TRUE)
v<-c(0,0,0,1,2,1,3)
banzhaf(v, method = "exact")
banzhaf(v, method = "appro", n_rep = 4000, replace = TRUE)
```

banzhaf_appro Banzhaf Index (approximated)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro(characteristic_func, n_players, n_rep, replace = TRUE)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
n_players	Only used if value_func is a function. The number of players in the game
n_rep	The number of iterations to perform in the approximated calculation
replace	should sampling be with replacement?

Value

The Banzhaf Index for each player

banzhaf_appro_func Banzhaf Index (approximation)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro_func(value_func, n_rep, n_players, replace = TRUE)
```

Arguments

value_func	The valued function defined on the subsets of the number of players
n_rep	The number of iterations to perform in the approximated calculation
n_players	Only used if value_func is a function. The number of players in the game.
replace	should sampling be with replacement?

Value

The Banzhaf Index for each player

banzhaf_appro_vector Banzhaf Index (approximated)

Description

Calculate the approximated Banzhaf Index based on sampling

Usage

```
banzhaf_appro_vector(value_func, n_rep)
```

Arguments

value_func	The valued function defined on the subsets of the number of players
n_rep	The number of iterations to perform in the approximated calculation

Value

The Banzhaf Index for each player

banzhaf_exact

Description

Calculate the approximated Banzhaf Index

Usage

banzhaf_exact(characteristic_func, n_players)

Arguments

characteristic_	_func
	The valued function defined on the subsets of the number of players
n_players	The number of players in the game.

Value

The Banzhaf Index for each player

banzhaf_owen Banzhaf-Owen value

Description

Calculate the Banzhaf-Owen value

Usage

```
banzhaf_owen(
   characteristic_func,
   union,
   method = "exact",
   n_rep = 10000,
   n_players = 0,
   replace = TRUE
)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
union	List of vectors indicating the a priori unions between the players
method	Method used to calculate the Owen value. Valid methods are: exact for the exact calculation or appro for approximated polynomial calculation based on sampling.
n_rep	Only used if method is appro. The number of iterations to perform in the approximated calculation $% \left({{\left[{{{\left[{{\left[{\left[{{\left[{{\left[{{\left[{$
n_players	Only used if characteristic_func is a function. The number of players in the game.
replace	should sampling be with replacement?

Value

The Banzhaf-Owen value for each player

Examples

```
characteristic_func <- c(0,0,0,0,30,30,40,40,50,50,60,70,80,90,100)
union <- list(c(1,3),c(2),c(4))
banzhaf_owen(characteristic_func, union)
banzhaf_owen(characteristic_func, union, method = "appro", n_rep = 4000)</pre>
```

banzhaf_owen_appro Banzhaf-Owen Value

Description

Calculate the approximated Banzhaf-Owen value

Usage

```
banzhaf_owen_appro(characteristic_func, union, n_players, n_rep, replace)
```

Arguments

characteristic_func

	The valued function defined on the subsets of the number of players
union	List of vectors indicating the a priori unions between the players
n_players	The number of players
n_rep	Only used if method is appro. The number of iterations to perform in the approximated calculation.
replace	should sampling be with replacement?

Value

The Banzhaf-Owen Index for each player

banzhaf_owen_exact Banzhaf-Owen Value

Description

Calculate the approximated Banzhaf-Owen value

Usage

```
banzhaf_owen_exact(characteristic_func, union, n_players)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
union	List of vectors indicating the a priori unions between the players
n_players	The number of players in the game.

Value

The Banzhaf Index for each player

coalitions	coalitions

Description

Create all the possible coalitions given the number of players

Usage

```
coalitions(n_players)
```

Arguments

n_players Number of players

Value

A list containing a data.frame of the binary representation of the coalitions and a vector of the classical representation (as sets) of the coalitions

egalitarian

Description

Calculate the egalitarian value

Usage

```
egalitarian(characteristic_func, n_players = 0)
```

Arguments

characterist	ic_func
	The valued function defined on the subsets of the number of players
n_players	Only used if characteristic_func is a function. The number of players in
	the game.

Value

The egalitarian value for each player

Examples

```
n <- 10
v <- function(coalition) {
    if (length(coalition) > n/2) {
        return(1)
    } else {
        return(0)
    }
}
egalitarian(v,n)
```

equal_surplus_division

Equal Surplus Division value

Description

Calculate the equal surplus division value

Usage

```
equal_surplus_division(characteristic_func, n_players = 0)
```

owen

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
n_players	Only used if characteristic_func is a function. The number of players in the game.

Value

The equal surplus division value for each player

Examples

```
n <- 10
v <- function(coalition) {
    if (length(coalition) > n/2) {
        return(1)
    } else {
        return(0)
    }
}
equal_surplus_division(v,n)
```

owen

Owen value

Description

Calculate the Owen value

Usage

```
owen(
   characteristic_func,
   union,
   method = "exact",
   n_rep = 10000,
   n_players = 0
)
```

Arguments

characteristic_func

	The valued function defined on the subsets of the number of players.
union	List of vectors indicating the a priori unions between the players.
method	Method used to calculate the Owen value. Valid methods are: exact for the exact calculation or appro for approximated polynomial calculation based on sampling.

owen_appro

n_rep	Only used if method is appro. The number of iterations to perform in the ap-
	proximated calculation.
n_players	The number of players in the game.

Value

The Owen value for each player.

Examples

```
n <- 10
v <- function(coalition) {
    if (length(coalition) > n/2) {
        return(1)
    } else {
        return(0)
    }
}
u <- lapply(1:(n/2), function(i) c(2*i - 1, 2*i))
owen(v, union = u, method = "appro", n_rep = 4000, n_players = n)
characteristic_func <- c(1,1,2,1,2,2,2)
union <- list(c(1,2),c(3))
owen(characteristic_func, union)
owen(characteristic_func, union, method = "appro", n_rep = 4000)
```

owen_appro	Owen value	(approximation
owen_appro	Owen value	арргохітанов

Description

Calculate the approximated Owen value based on sampling

Usage

```
owen_appro(characteristic_func, union, n_players, n_rep)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
union	List of vectors indicating the a priori unions between the players
n_players	The number of players
n_rep	The number of iterations to perform in the approximated calculation

Value

The Owen value for each player

owen_exact

Description

Calculate the exact Owen

Usage

```
owen_exact(characteristic_func, union, n_players = NULL)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
union	List of vectors indicating the a priori unions between the players
n_players	The number of players

Value

The Owen value for each player

|--|--|

Description

Given a permutation 0 of players and a player i, calculate the set of predecessors of the player i in the order 0 $\,$

Usage

```
predecessor(permutation, player, include_player = FALSE)
```

Arguments

permutation	A permutation of the players
player	Number of the player i
include_player	Whether the player i is included as predecessor of itself or not

Value

The set of predecessors of the player i in the order 0

shapley

Description

Calculate the Shapley value

Usage

```
shapley(characteristic_func, method = "exact", n_rep = 10000, n_players = 0)
```

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players.
method	Method used to calculate the Shapley value. Valid methods are: exact for the exact calculation or appro for approximated polynomial calculation based on sampling.
n_rep	Only used if method is appro. The number of iterations to perform in the approximated calculation.
n_players	Only used if characteristic_func is a function. The number of players in the game.

Value

The Shapley value for each player.

Examples

```
n <- 3
v <- c(1,1,2,1,2,2,2)
shapley(v, method = "exact")
shapley(v, method = "appro", n_rep = 4000)</pre>
```

shapley_appro Shapley value (approximation)

Description

Calculate the approximated Shapley value based on sampling

Usage

```
shapley_appro(characteristic_func, n_players, n_rep)
```

shapley_exact

Arguments

characteristic_func		
	The valued function defined on the subsets of the number of players	
n_players	The number of players	
n_rep	The number of iterations to perform in the approximated calculation	

Value

The Shapley value for each player

<pre>shapley_exact</pre>	Shapley value (exact)
--------------------------	-----------------------

Description

Calculate the exact Shapley value

Usage

shapley_exact(characteristic_func, n_players)

Arguments

characteristic_	func
	The valued function defined on the subsets of the number of players
n_players	The number of players

Value

The Shapley value for each player

Index

banzhaf, 2
banzhaf_appro, 3
banzhaf_appro_func, 4
banzhaf_appro_vector, 4
banzhaf_exact, 5
banzhaf_owen, 5
banzhaf_owen_appro, 6
banzhaf_owen_exact, 7

coalitions, 7

egalitarian, 8
equal_surplus_division, 8

owen,9 owen_appro,10 owen_exact,11

predecessor, 11

shapley, 12
shapley_appro, 12
shapley_exact, 13