## ----echo = FALSE, message = FALSE, warning = FALSE--------------------------- library(PatientLevelPrediction) ## ----echo = TRUE, eval=FALSE-------------------------------------------------- # createGenderSplit <- function(nfold) { # # create list of inputs to implement function # splitSettings <- list(nfold = nfold) # # # specify the function that will implement the sampling # attr(splitSettings, "fun") <- "implementGenderSplit" # # # make sure the object returned is of class "sampleSettings" # class(splitSettings) <- "splitSettings" # return(splitSettings) # } ## ----tidy=FALSE,eval=FALSE---------------------------------------------------- # implementGenderSplit <- function(population, splitSettings) { # # find the people who are male: # males <- population$rowId[population$gender == 8507] # females <- population$rowId[population$gender == 8532] # # splitIds <- data.frame( # rowId = c(males, females), # index = c( # rep(-1, length(males)), # sample(1:splitSettings$nfold, length(females), replace = TRUE) # ) # ) # # # return the updated trainData # return(splitIds) # } ## ----tidy=TRUE,eval=TRUE------------------------------------------------------ citation("PatientLevelPrediction")