--- title: "Adding Custom Sampling Functions" author: "Jenna Reps" date: "`r Sys.Date()`" output: rmarkdown::html_vignette --- ```{=html} ``` ```{r, echo = FALSE, message = FALSE, warning = FALSE} library(PatientLevelPrediction) ``` # Introduction This vignette describes how you can add your own custom function for sampling the target population in the Observational Health Data Sciencs and Informatics (OHDSI) [`PatientLevelPrediction`](https://github.com/OHDSI/PatientLevelPrediction) package. This vignette assumes you have read and are comfortable with building single patient level prediction models as described in the `vignette('BuildingPredictiveModels')`. **We invite you to share your new sample functions with the OHDSI community through our [GitHub repository](https://github.com/OHDSI/PatientLevelPrediction).** # Sample Function Code Structure To make a sampling function that can be used within PatientLevelPrediction you need to write two different functions. The 'create' function and the 'implement' function. The 'create' function, e.g., create\, takes the parameters of the sample 'implement' function as input, checks these are valid and outputs these as a list of class 'sampleSettings' with the 'fun' attribute specifying the 'implement' function to call. The 'implement' function, e.g., implement\, must take as input: \* trainData - a list containing: - covariateData: the plpData\$covariateData restricted to the training patients - labels: a data frame that contain rowId (patient identifier) and outcomeCount (the class labels) - folds: a data.frame that contains rowId (patient identifier) and index (the cross validation fold) \* sampleSettings - the output of your create\ The 'implement' function can then do any manipulation of the trainData (such as undersampling or oversampling) but must output a trainData object containing the covariateData, labels and folds for the new training data sample. # Example Let's consider the situation where we wish to take a random sample of the training data population. To make this custom sampling function we need to write the 'create' and 'implement' R functions. ## Create function Our random sampling function will randomly sample `n` patients from the trainData. Therefore, the inputs for this are: \* `n` an integer/double specifying the number of patients to sample \* `sampleSeed` an integer/double specifying the seed for reproducibility ```{r, echo = TRUE, eval=FALSE} createRandomSampleSettings <- function(n = 10000, sampleSeed = sample(10000, 1)) { # add input checks checkIsClass(n, c("numeric", "integer")) checkHigher(n, 0) checkIsClass(sampleSeed, c("numeric", "integer")) # create list of inputs to implement function sampleSettings <- list( n = n, sampleSeed = sampleSeed ) # specify the function that will implement the sampling attr(sampleSettings, "fun") <- "implementRandomSampleSettings" # make sure the object returned is of class "sampleSettings" class(sampleSettings) <- "sampleSettings" return(sampleSettings) } ``` We now need to create the 'implement' function `implementRandomSampleSettings()` ## Implement function All 'implement' functions must take as input the trainData and the sampleSettings (this is the output of the 'create' function). They must return a trainData object containing the covariateData, labels and folds. In our example, the `createRandomSampleSettings()` will return a list with 'n' and 'sampleSeed'. The sampleSettings therefore contains these. ```{r tidy=FALSE,eval=FALSE} implementRandomSampleSettings <- function(trainData, sampleSettings) { n <- sampleSettings$n sampleSeed <- sampleSettings$sampleSeed if (n > nrow(trainData$labels)) { stop("Sample n bigger than training population") } # set the seed for the randomization set.seed(sampleSeed) # now implement the code to do your desired sampling sampleRowIds <- sample(trainData$labels$rowId, n) sampleTrainData <- list() sampleTrainData$labels <- trainData$labels %>% dplyr::filter(.data$rowId %in% sampleRowIds) %>% dplyr::collect() sampleTrainData$folds <- trainData$folds %>% dplyr::filter(.data$rowId %in% sampleRowIds) %>% dplyr::collect() sampleTrainData$covariateData <- Andromeda::andromeda() sampleTrainData$covariateData$covariateRef <- trainData$covariateData$covariateRef sampleTrainData$covariateData$covariates <- trainData$covariateData$covariates %>% dplyr::filter(.data$rowId %in% sampleRowIds) # update metaData$populationSize metaData <- attr(trainData$covariateData, "metaData") metaData$populationSize <- n attr(sampleTrainData$covariateData, "metaData") <- metaData # make the cocvariateData the correct class class(sampleTrainData$covariateData) <- "CovariateData" # return the updated trainData return(sampleTrainData) } ``` # Acknowledgments Considerable work has been dedicated to provide the `PatientLevelPrediction` package. ```{r tidy=TRUE,eval=TRUE} citation("PatientLevelPrediction") ``` **Please reference this paper if you use the PLP Package in your work:** [Reps JM, Schuemie MJ, Suchard MA, Ryan PB, Rijnbeek PR. Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. J Am Med Inform Assoc. 2018;25(8):969-975.](https://dx.doi.org/10.1093/jamia/ocy032) This work is supported in part through the National Science Foundation grant IIS 1251151.