## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, warning = FALSE, eval=rmarkdown::pandoc_available("1.12.3") ) library(MBNMAtime) library(rmarkdown) library(knitr) library(dplyr) library(ggplot2) library(ggdist) #load(system.file("extdata", "vignettedata.rda", package="MBNMAtime", mustWork = TRUE)) ## ----result="hide"------------------------------------------------------------ # Run a quadratic time-course MBNMA using the alogliptin dataset network.alog <- mb.network(alog_pcfb) mbnma <- mb.run(network.alog, fun=tpoly(degree=2, pool.1="rel", method.1="random", pool.2="rel", method.2="common" ) ) ## ----------------------------------------------------------------------------- # Calculate relative effects between 3 treatments allres <- get.relative(mbnma, time=20, treats = c("alog_100", "alog_50", "placebo")) print(allres) ## ----echo=FALSE, results='asis', fig.cap="2-stage MBNMA: For clarity, 95%CrIs are not shown in the plots or tables but these are calculated and computed in `get.relative()`. Thick connecting lines in network plots indicate comparisons with rich time-course data that can be modelled with a more complex function (e.g. B-spline), thin connecting lines in network plots indicate comparisons with sparse time-course data that can only be modelled with a less complex function (e.g. BEST-ITP). Comparisons between treatments in different subnetworks that are not the network reference must be excluded (red dashed line in network plot)."---- knitr::include_graphics("2stageMBNMA.png", dpi=250) ## ----results="hide", fig.show="hold", eval=FALSE------------------------------ # # Using the osteoarthritis dataset # network.pain <- mb.network(osteopain, reference = "Pl_0") # # # Run a first-order fractional polynomial time-course MBNMA # mbnma <- mb.run(network.pain, # fun=tfpoly(degree=1, # pool.1="rel", method.1="random", # method.power1=0.5)) # # # Plot a box-plot of deviance contributions (the default) # devplot(mbnma, n.iter=1000) ## ----echo=FALSE, results="hide", fig.show="hold"------------------------------ # Using the osteoarthritis dataset network.pain <- mb.network(osteopain, reference = "Pl_0") # Run a first-order fractional polynomial time-course MBNMA mbnma <- mb.run(network.pain, fun=tfpoly(degree=1, pool.1="rel", method.1="random", method.power1=0.5), n.iter=5000) # Plot a box-plot of deviance contributions (the default) devplot(mbnma, n.iter=500) ## ----eval=FALSE--------------------------------------------------------------- # # Plot fitted and observed values with treatment labels # fitplot(mbnma, n.iter=1000) ## ----results="hide"----------------------------------------------------------- # Run a quadratic time-course MBNMA using the alogliptin dataset mbnma <- mb.run(network.alog, fun=tpoly(degree=2, pool.1="rel", method.1="random", pool.2="rel", method.2="common" ) ) plot(mbnma) ## ----include=FALSE, eval=rmarkdown::pandoc_available("1.12.3")---------------- load(system.file("extdata", "ranks.rda", package="MBNMAtime", mustWork = TRUE)) ## ----results="hide", eval=rmarkdown::pandoc_available("1.12.3")--------------- # Using the osteoarthritis dataset network.pain <- mb.network(osteopain, reference = "Pl_0") # Run a piecewise linear time-course MBNMA with a knot at 1 week mbnma <- mb.run(network.pain, fun=tspline(type="ls", knots = 1, pool.1 = "rel", method.1="common", pool.2 = "rel", method.2="common")) # Rank results based on AUC (calculated 0-10 weeks), more negative slopes considered to be "better" ranks <- rank(mbnma, param=c("auc"), int.range=c(0,10), lower_better = TRUE, n.iter=1000) ## ----echo=FALSE, eval=FALSE, include=FALSE------------------------------------ # save(ranks, file="inst/extdata/ranks.rda") ## ----eval=rmarkdown::pandoc_available("1.12.3")------------------------------- print(ranks) ## ----eval=rmarkdown::pandoc_available("1.12.3")------------------------------- # Ranking histograms for AUC plot(ranks) ## ----eval=rmarkdown::pandoc_available("1.12.3")------------------------------- # Cumulative ranking for all ranked parameters cumrank(ranks)