EFAfactors: Determining the Number of Factors in Exploratory Factor Analysis

Provides a collection of standard factor retention methods in Exploratory Factor Analysis (EFA), making it easier to determine the number of factors. Traditional methods such as the scree plot by Cattell (1966) <doi:10.1207/s15327906mbr0102_10>, Kaiser-Guttman Criterion (KGC) by Guttman (1954) <doi:10.1007/BF02289162> and Kaiser (1960) <doi:10.1177/001316446002000116>, and flexible Parallel Analysis (PA) by Horn (1965) <doi:10.1007/BF02289447> based on eigenvalues form PCA or EFA are readily available. This package also implements several newer methods, such as the Empirical Kaiser Criterion (EKC) by Braeken and van Assen (2017) <doi:10.1037/met0000074>, Comparison Data (CD) by Ruscio and Roche (2012) <doi:10.1037/a0025697>, and Hull method by Lorenzo-Seva et al. (2011) <doi:10.1080/00273171.2011.564527>, as well as some AI-based methods like Comparison Data Forest (CDF) by Goretzko and Ruscio (2024) <doi:10.3758/s13428-023-02122-4> and Factor Forest (FF) by Goretzko and Buhner (2020) <doi:10.1037/met0000262>. Additionally, it includes a deep neural network (DNN) trained on large-scale datasets that can efficiently and reliably determine the number of factors.

Version: 1.2.0
Depends: R (≥ 4.1.0)
Imports: BBmisc, checkmate, ddpcr, ineq, MASS, Matrix, mlr, proxy, psych, ranger, reticulate, Rcpp, RcppArmadillo, SimCorMultRes, xgboost
LinkingTo: Rcpp, RcppArmadillo
Published: 2025-01-07
DOI: 10.32614/CRAN.package.EFAfactors
Author: Haijiang Qin ORCID iD [aut, cre, cph], Lei Guo ORCID iD [aut, cph]
Maintainer: Haijiang Qin <haijiang133 at outlook.com>
License: GPL-3
URL: https://haijiangqin.com/EFAfactors/
NeedsCompilation: yes
Materials: NEWS
CRAN checks: EFAfactors results

Documentation:

Reference manual: EFAfactors.pdf

Downloads:

Package source: EFAfactors_1.2.0.tar.gz
Windows binaries: r-devel: EFAfactors_1.2.0.zip, r-release: EFAfactors_1.2.0.zip, r-oldrel: EFAfactors_1.2.0.zip
macOS binaries: r-release (arm64): EFAfactors_1.2.0.tgz, r-oldrel (arm64): EFAfactors_1.2.0.tgz, r-release (x86_64): EFAfactors_1.2.0.tgz, r-oldrel (x86_64): EFAfactors_1.2.0.tgz
Old sources: EFAfactors archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=EFAfactors to link to this page.