DNNSIM: Single-Index Neural Network for Skewed Heavy-Tailed Data

Provides a deep neural network model with a monotonic increasing single index function tailored for periodontal disease studies. The residuals are assumed to follow a skewed T distribution, a skewed normal distribution, or a normal distribution. More details can be found at Liu, Huang, and Bai (2024) <doi:10.1016/j.csda.2024.108012>.

Version: 0.1.1
Imports: reticulate (≥ 1.37.0), stats (≥ 4.3.0), Rdpack (≥ 2.6)
Published: 2025-01-07
DOI: 10.32614/CRAN.package.DNNSIM
Author: Qingyang Liu ORCID iD [aut, cre], Shijie Wang [aut], Ray Bai ORCID iD [aut], Dipankar Bandyopadhyay [aut]
Maintainer: Qingyang Liu <rh8liuqy at gmail.com>
License: GPL (≥ 3)
NeedsCompilation: no
SystemRequirements: Python (>= 3.8.0); PyTorch (https://pytorch.org/); NumPy (https://numpy.org/); SciPy (https://scipy.org/); sklearn (https://scikit-learn.org/stable/);
Materials: NEWS
CRAN checks: DNNSIM results

Documentation:

Reference manual: DNNSIM.pdf

Downloads:

Package source: DNNSIM_0.1.1.tar.gz
Windows binaries: r-devel: DNNSIM_0.1.1.zip, r-release: DNNSIM_0.1.1.zip, r-oldrel: DNNSIM_0.1.1.zip
macOS binaries: r-release (arm64): DNNSIM_0.1.1.tgz, r-oldrel (arm64): DNNSIM_0.1.1.tgz, r-release (x86_64): DNNSIM_0.1.1.tgz, r-oldrel (x86_64): DNNSIM_0.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=DNNSIM to link to this page.