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asymcp Conditional power computation using asymptotic test.

Description

Compute conditional power of single-arm group sequential design with binary endpoint based on
asymptotic test, given the interim result.

Usage

asymcp(d, p_1, i, z_i)

Arguments

d An object of the class asymdesign or asymprob.

p_1 A scalar or vector representing response rate or probability of success under the
alternative hypothesis. The value(s) should be within (p_0,1).

i Index of the analysis at which the interim statistic is given. Should be an integer
ranges from 1 to K-1. i will be rounded to its nearest whole value if it is not an
integer.

z_i The interim statistic at analysis i.

Details

Conditional power quantifies the conditional probability of crossing the upper bound given the
interim result zi, 1 ≤ i < K. Having inherited sample sizes and boundaries from asymdesign or
asymprob, given the interim statistic at ith analysis zi, the conditional power is defined as

αi,K(p|zi) = Pp(ZK ≥ uK , ZK−1 > lK−1, . . . , Zi+1 > li+1|Zi = zi)

With asymptotic test, the test statistic at analysis k is Zk = θ̂k
√
nk/p/(1− p) = (

∑nk

s=1 Xs/nk −
p0)

√
nk/p/(1− p), which follows the normal distribution N(θ

√
nk/p/(1− p), 1) with θ = p −

p0. In practice, p in Zk can be substituted with the sample response rate
∑nk

s=1 Xs/nk.

The increment statistic Zk

√
nk/p/(1− p)−Zk−1

√
nk−1/p/(1− p) also follows a normal distri-

bution independently of Z1, . . . , Zk−1. Then the conditional power can be easily obtained using a
procedure similar to that for unconditional boundary crossing probabilities.

Value

A list with the elements as follows:

• K: As in d.

• n.I: As in d.

• u_K: As in d.

• lowerbounds: As in d.

• i: i used in computation.
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• z_i: As input.

• cp: A matrix of conditional powers under different response rates.

• p_1: As input.

• p_0: As input.

Reference

• Alan Genz et al. (2018). mvtnorm: Multivariate Normal and t Distributions. R package
version 1.0-11.

See Also

asymprob, asymdesign, exactcp.

Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)
tt2=asymprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt1)
asymcp(tt1,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),1,2)
asymcp(tt2,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),3,2.2)

asymdesign Boundary and sample size computation using asymptotic test.

Description

Calculate boundaries and sample sizes of single-arm group sequential design with binary endpoint
based on asymptotic test.

Usage

asymdesign(I, beta = 0.3, betaspend, alpha = 0.05, p_0, p_1, K, tol = 1e-06)

Arguments

I The information fractions at each analysis. For binary endpoints, the informa-
tion fraction for anaysis k is equal to n_k/n_K, where n_k is the sample size
available at analysis k and n_K is the sample size available at the last analysis
or the maximum sample size. Should be a positive increasing vector of length
K or K-1. If I has K elements among which the last one is not 1, then I will be
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standardized so that the last information fraction is 1. If I has K-1 elements, the
last element in I must be less than 1.

beta The desired overall type II error level. Should be a scalar within the interval
(0,0.5]. Default value is 0.3, that is, power=0.7.

betaspend The proportions of beta spent at each analysis. Should be a vector of length K
with all elements belong to [0,1]. If the sum of all elements in betaspend is not
equal to 1, betaspend will be standardized.

alpha The desired overall type I error level. Should be a scalar within the interval
(0,0.3]. Default is 0.05.

p_0 The response rate or the probability of success under null hypothesis. Should be
a scalar within (0,1).

p_1 The response rate or the probability of success under alternative hypothesis.
Should be a scalar within (p_0,1).

K The maximum number of analyses, including the interim and the final. Should
be an integer within (1,20]. K will be rounded to its nearest whole number if it
is not an integer.

tol The tolerance level which is essentially the maximum acceptable difference be-
tween the desired type II error spending and the actual type II error spending,
when computing the boundaries using asymptotic test. Should be a positive
scalar no more than 0.01. The default value is 1e-6.

Details

Suppose X1, X2, . . . are binary outcomes following Bernoulli distribution b(1, p), in which 1 stands
for the case that the subject responds to the treatment and 0 otherwise. Consider a group sequential
test with K planned analyses, where the null and alternative hypotheses are H0 : p = p0 and
H1 : p = p1 respectively. Note that generally p1 is greater than p0. For k < K, the trial stops if
and only if the test statistic Zk crosses the futility boundary, that is, Zk <= lk. The lower bound
for the last analysis lK is set to be equal to the last and only upper bound uK to make a decision.
At the last analysis, the null hypothesis will be rejected if ZK >= uK .

The computation of lower bounds except for the last one is implemented with uK fixed, thus the
derived lower bounds are non-binding. Furthermore, the overall type I error will not be inflated if
the trial continues after crossing any of the interim lower bounds, which is convenient for the pur-
pose of monitoring. Let the sequence of sample sizes required at each analysis be n1, n2, . . . , nK .
For binomial endpoint, the Fisher information equals nk/p/(1 − p) which is proportional to nk.
Accordingly, the information fraction available at each analysis is equivalent to nk/nK .

For a p0 not close to 1 or 0, with a large sample size, the test statistic at analysis k is Zk =
θ̂k
√

nk/p/(1− p) = (
∑nk

s=1 Xs/nk − p0)
√

nk/p/(1− p), which follows the normal distribution
N(θ

√
nk/p/(1− p), 1) with θ = p − p0. In practice, p in Zk can be substituted with the sample

response rate
∑nk

s=1 Xs/nk.

Under the null hypothesis, θ = 0 and Zk follows a standard normal distribution. During the calcula-
tion, the only upper bound uK is firstly derived under H0, without given nK . Thus, there is no need
to adjust uK for different levels of nK . Following East, given uK , compute the maximum sample
size nK under H1. The rest sample sizes can be obtained by multipling information fractions and
nK . The lower boundaries for the first K − 1 analyses are sequentially determined by a search
method. The whole searching procedure stops if the overall type II error does not excess the desired
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level or the times of iteration excess 30. Otherwise, increase the sample sizes until the type II error
meets user’s requirement.

The multiple integrals of multivariate normal density functions are conducted with pmvnorm in R
package mvtnorm. Through a few transformations of the integral variables, pmvnorm turns the mul-
tiple integral to the product of several univariate integrals, which greatly reduces the computational
burden of sequentially searching for appropriate boundaries.

Value

An object of the class asymdesign. This class contains:

• I: I used in computation.

• beta: As input.

• betaspend: The desired type II error spent at each analysis used in computation.

• alpha: As input.

• p_0: As input.

• p_1: As input.

• K: K used in computation.

• tol: As input.

• n.I: A vector of length K which contains sample sizes required at each analysis to achieve
desired type I and type II error requirements. n.I equals sample size for the last analysis times
the vector of information fractions.

• u_K: The upper boundary for the last analysis.

• lowerbounds: A vector of length K which contains lower boundaries for each analysis. Note
that the lower boundaries are non-binding.

• problow: Probabilities of crossing the lower bounds under H1 or the actual type II error at
each analysis.

• probhi: Probability of crossing the last upper bound under H0 or the actual type I error.

• power: power of the group sequential test with the value equals 1-sum(problow).

Reference

• Cytel Inc. East Version 6.4.1 Manual. 2017.

• Alan Genz et al. (2018). mvtnorm: Multivariate Normal and t Distributions. R package
version 1.0-11.

See Also

asymprob, asymcp, exactdesign.
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Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)

asymprob Boundary crossing probabilities computation using asymptotic test.

Description

Calculate boundary crossing probabilities of single-arm group sequential design with binary end-
point based on asymptotic test.

Usage

asymprob(K = 0, p_0, p_1, n.I, u_K, lowerbounds, d = NULL)

Arguments

K The maximum number of analyses, including the interim and the final. Should
be an integer within (1,20]. K will be rounded to its nearest whole number if it
is not an integer. The default is 0.

p_0 The response rate or the probability of success under null hypothesis. Should be
a scalar within (0,1).

p_1 A scalar or vector representing response rate or probability of success under the
alternative hypothesis. The value(s) should be within (p_0,1). It is a mandatory
input.

n.I A vector of length K which contains sample sizes required at each analysis.
Should be a positive and increasing sequence.

u_K The upper boundary for the last analysis.

lowerbounds Non-decreasing lower boundaries for each analysis. With length K, the last
lower bound must be identical to u_K. With length K-1, the last element must
be no greater than u_K and u_K will be automatically added into the sequence.

d An object of the class asymdesign.
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Details

This function calculates probabilities of crossing the upper or the lower boundaries under null hy-
pothesis and a set of alternative hypothese. With K=0 (as default), d must be an object of class
asymdesign. Meanwhile, other arguments except for p_1 will be inherited from d and the input
values will be ignored. With K!=0, the probabilities are derived from the input arguments. In this
circumstance, all arguments except for d are required.

The computation is based on the single-arm group sequential asymptotic test described in asymdesign.
Therefore, for the output matrix of upper bound crossing probabilities, the values for the first K-1
analyses are zero since there is only one upper bound for the last analysis.

Value

An object of the class asymprob. This class contains:

• p_0: As input with d=NULL or as in d.

• p_1: As input.

• K: K used in computation.

• n.I: As input with d=NULL or as in d.

• u_K: As input with d=NULL or as in d.

• lowerbounds: lowerbounds used in computation.

• problow: Probabilities of crossing the lower bounds at each analysis.

• probhi: Probability of crossing the upper bounds at each analysis.

Reference

• Alan Genz et al. (2018). mvtnorm: Multivariate Normal and t Distributions. R package
version 1.0-11.

See Also

asymdesign, asymcp, exactprob.

Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)
asymprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt1)
asymprob(K=5,p_0=0.4,p_1=c(0.5,0.6,0.7,0.8),n.I=c(15,20,25,30,35),u_K=1.65,
lowerbounds=c(-1.2,-0.5,0.2,0.8,1.65))
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exactcp Conditional power computation using exact test.

Description

Compute conditional power of single-arm group sequential design with binary endpoint based on
binomial distribution.

Usage

exactcp(d, p_1, i, z_i)

Arguments

d An object of the class exactdesign or exactprob.

p_1 A scalar or vector representing response rate or probability of success under the
alternative hypothesis. The value(s) should be within (p_0,1).

i Index of the analysis at which the interim statistic is given. Should be an integer
ranges from 1 to K-1. i will be rounded to its nearest whole value if it is not an
integer.

z_i The interim statistic at analysis i.

Details

Conditional power quantifies the conditional probability of crossing the upper bound given the
interim result zi, 1 ≤ i < K. Having inherited sample sizes and boundaries from exactdesign or
exactprob, given the interim statistic at ith analysis zi, the conditional power is defined as

αi,K(p|zi) = Pp(ZK ≥ uK , ZK−1 > lK−1, . . . , Zi+1 > li+1|Zi = zi)

With exact test, the test statistic at analysis k is Zk =
∑nk

s=1 Xs which follows binomial distribution
b(nk, p). Actually, Zk is the total number of responses up to the kth analysis.

The increment statistic Zk − Zk−1 also follows a binomial distribution b(nk − nk−1, p) indepen-
dently of Z1, . . . , Zk−1. Then the conditional power can be easily obtained using the same proce-
dure for deriving unconditional boundary crossing probabilities.

Note that Z1, . . . , ZK is a non-decreasing sequence, thus the conditional power is 1 when the in-
terim statistic zi >= uK .

Value

A list with the elements as follows:

• K: As in d.

• n.I: As in d.

• u_K: As in d.

• lowerbounds: As in d.
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• i: i used in computation.

• z_i: As input.

• cp: A matrix of conditional powers under different response rates.

• p_1: As input.

• p_0: As input.

Reference

• Christopher Jennison, Bruce W. Turnbull. Group Sequential Methods with Applications to
Clinical Trials. Chapman and Hall/CRC, Boca Raton, FL, 2000.

See Also

exactprob, asymcp, exactdesign.

Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)
tt2=exactdesign(tt1)
tt3=exactprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt2)
exactcp(tt2,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),1,2)
exactcp(tt3,p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),3,19)

exactdesign Compute sample size and boundaries using exact binomial distribu-
tion

Description

Compute sample size and boundaries of single-arm group sequential design with binary endpoint
using exact binomial distribution

Usage

exactdesign(d)

Arguments

d An object of the class asymdesign.



10 exactdesign

Details

Suppose X1, X2, . . . are binary outcomes following Bernoulli distribution b(1, p), in which 1 stands
for the case that the subject responds to the treatment and 0 otherwise. Consider a group sequential
test with K planned analyses, where the null and alternative hypotheses are H0 : p = p0 and
H1 : p = p1 respectively. Note that generally p1 is greater than p0. For k < K, the trial stops if
and only if the test statistic Zk crosses the futility boundary, that is, Zk <= lk. The lower bound
for the last analysis lK is set to be equal to the last and only upper bound uK to make a decision.
At the last analysis, the null hypothesis will be rejected if ZK >= uK .

The computation of lower bounds except for the last one is implemented with uK fixed, thus the
derived lower bounds are non-binding. Furthermore, the overall type I error will not be inflated if
the trial continues after crossing any of the interim lower bounds, which is convenient for the pur-
pose of monitoring. Let the sequence of sample sizes required at each analysis be n1, n2, . . . , nK .
For binomial endpoint, the Fisher information equals nk/p/(1 − p) which is proportional to nk.
Accordingly, the information fraction available at each analysis is equivalent to nk/nK .

With exact test, the test statistic at analysis k is Zk =
∑nk

s=1 Xs which follows binomial distribution
b(nk, p). Actually, Zk is the total number of responses up to the kth analysis.

Under the null hypothesis, Zk follows a binomial distribution b(nk, p0). While under the alternative
hypothesis, Zk follows b(nk, p1). It may involve massive computation to simutaneously find proper
nK and uK . In fact, the sample sizes obtained from asymptotic test ought to be close to those from
exact test. Thus, we adopt nK from asymptotic test as the starting value. The starting value of uK

is computed given the nK . Iteratively update uK and nK until errors are limited to certain amount.

Like asymdesign, the lower boundaries for the first K − 1 analyses are sequentially determined
by a search method. However, if the actual overall type II error exceeds the desired level, not
only sample sizes but also all the boundaries are updated, since the binomial distribution under H0

involves with sample size.

Due to the discreteness of binomial distribution, in exact test, the type I and type II error actually
spent at each analysis may not approximate the designated amount. With the only one upper bound,
the whole type I error is spent at the final analysis. From some simulation studies, though not
presented here, we found that carrying over unused type II error has minor influence on the resulting
boundaries and sample sizes. However, in an attempt to reduce the false positive rate, we decided
to recycle the unspent amount of desired type II error. Thus, the elements of betaspend in an
exactdesign object may be greater than the amount pre-specified by the user.

Value

An object of the class exactdesign. This class contains:

• I: I used in computation, as in d.

• beta: The desired overall type II error level, as in d.

• betaspend: The desired type II error spent at each analysis used in computation, as in d.

• alpha: The desired overall type I error level, as in d.

• p_0: The response rate or the probability of success under null hypothesis, as in d.

• p_1: The response rate or the probability of success under alternative hypothesis, as in d.

• K: K used in computation, as in d.



exactprob 11

• n.I: A vector of length K which contains sample sizes required at each analysis to achieve
desired type I and type II error requirements. n.I equals sample size for the last analysis times
the vector of information fractions.

• u_K: The upper boundary for the last analysis.

• lowerbounds: A vector of length K which contains lower boundaries for each annalysis. Note
that the lower boundaries are non-binding.

• problow: Probabilities of crossing the lower bounds under H1 or the actual type II error at
each analysis.

• probhi: Probability of crossing the last upper bound under H0 or the actual type I error.

• power: power of the group sequential test with the value euqals 1-sum(problow).

Reference

• Christopher Jennison, Bruce W. Turnbull. Group Sequential Methods with Applications to
Clinical Trials. Chapman and Hall/CRC, Boca Raton, FL, 2000.

See Also

exactprob, exactcp, asymdesign.

Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)
tt2=exactdesign(tt1)

exactprob Boundary crossing probabilities computation using exact test.

Description

Calculate boundary crossing probabilities of single-arm group sequential design with binary end-
point using binomial distribution

Usage

exactprob(K = 0, p_0, p_1, n.I, u_K, lowerbounds, d = NULL)
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Arguments

K The maximum number of analyses, including the interim and the final. Should
be an integer within (1,20]. K will be rounded to the nearest whole number if it
is not an integer. The default is 0.

p_0 The response rate or the probability of success under null hypothesis. Should be
a scalar within (0,1).

p_1 A scalar or vector representing response rate or probability of success under the
alternative hypothesis. The value(s) should be within (p_0,1). It is a mandatory
input.

n.I A vector of length K which contains sample sizes required at each analysis.
Should be a positive and increasing sequence.

u_K The upper boundary for the last analysis.

lowerbounds Non-decreasing lower boundaries for each analysis, in which each element is
no less than -1 (no lower bound). With length K, the last lower bound must be
identical to u_K. With length K-1, the last element must be no greater than u_K
and u_K will be automatically added into the sequence. Note the lower bound
must be less than the corresponding sample size.

d An object of the class exactdesign.

Details

This function is similar to asymprob except that the former uses binomial distribution and the latter
uses the normal asymptotic distribution. With K=0 (as default), d must be an object of class exactde-
sign. Meanwhile, other arguments except for p_1 will be inherited from d and the input values will
be ignored. With K!=0, the probabilities are derived from the input arguments. In this circumstance,
all the arguments except for d are required.

The computation is based on the single-arm group sequential exact test described in exactdesign.
Therefore, for the output matrix of upper bound crossing probabilities, the values for the first K-1
analyses are zero since there is only one upper bound for the last analysis.

Value

An object of the class exactprob. This class contains:

• p_0: As input with d=NULL or as in d.

• p_1: As input.

• K: K used in computation.

• n.I: As input with d=NULL or as in d.

• u_K: As input with d=NULL or as in d.

• lowerbounds: lowerbounds used in computation.

• problow: Probabilities of crossing the lower bounds at each analysis.

• probhi: Probability of crossing the upper bounds at each analysis.
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Reference

• Christopher Jennison, Bruce W. Turnbull. Group Sequential Methods with Applications to
Clinical Trials. Chapman and Hall/CRC, Boca Raton, FL, 2000.

• Keaven M. Anderson, Dan (Jennifer) Sun, Zhongxin (John) Zhang. gsDesign: An R Package
for Designing Group Sequential Clinical Trials. R package version 3.0-1.

Note

The calculation of boundary crossing probabilities here borrowed strength from the source code of
function gsBinomialExact in package gsDesign and we really appreciate their work.

See Also

exactdesign, exactcp, asymprob.

Examples

I=c(0.2,0.4,0.6,0.8,0.99)
beta=0.2
betaspend=c(0.1,0.2,0.3,0.3,0.2)
alpha=0.05
p_0=0.3
p_1=0.5
K=4.6
tol=1e-6
tt1=asymdesign(I,beta,betaspend,alpha,p_0,p_1,K,tol)
tt2=exactdesign(tt1)
tt3=exactprob(p_1=c(0.4,0.5,0.6,0.7,0.8,0.9),d=tt2)
tt3=exactprob(K=5,p_0=0.4,p_1=c(0.5,0.6,0.7,0.8),n.I=c(15,20,25,30,35),u_K=15,
lowerbounds=c(3,5,10,12,15))
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