CRAN Package Check Results for Package glpkAPI

Last updated on 2025-01-15 05:50:21 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.3.4 10.26 55.76 66.02 NOTE
r-devel-linux-x86_64-debian-gcc 1.3.4 7.81 40.88 48.69 NOTE
r-devel-linux-x86_64-fedora-clang 1.3.4 106.63 NOTE
r-devel-linux-x86_64-fedora-gcc 1.3.4 117.21 NOTE
r-devel-windows-x86_64 1.3.4 20.00 133.00 153.00 NOTE
r-patched-linux-x86_64 1.3.4 12.91 51.79 64.70 NOTE
r-release-linux-x86_64 1.3.4 9.08 52.64 61.72 NOTE
r-release-macos-arm64 1.3.4 48.00 NOTE
r-release-macos-x86_64 1.3.4 83.00 NOTE
r-release-windows-x86_64 1.3.4 21.00 127.00 148.00 NOTE
r-oldrel-macos-arm64 1.3.4 44.00 OK
r-oldrel-macos-x86_64 1.3.4 67.00 NOTE
r-oldrel-windows-x86_64 1.3.4 24.00 136.00 160.00 OK

Check Details

Version: 1.3.4
Check: Rd files
Result: NOTE checkRd: (-1) getRiiGLPK.Rd:35: Lost braces; missing escapes or markup? 35 | Returns the current scale factor $r_{ii}$ for row \code{i} of the specified | ^ checkRd: (-1) getSjjGLPK.Rd:35: Lost braces; missing escapes or markup? 35 | Returns the current scale factor $s_{jj}$ for column \code{j} of the | ^ checkRd: (-1) setRiiGLPK.Rd:28: Lost braces; missing escapes or markup? 28 | Scale factor $r_{ii}$. | ^ checkRd: (-1) setSjjGLPK.Rd:28: Lost braces; missing escapes or markup? 28 | Scale factor $s_{jj}$. | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

Version: 1.3.4
Check: top-level files
Result: NOTE possible bashism in configure.ac line 44 (test -a/-o): if test [ -n "$PKG_CPPFLAGS" -a -n "$PKG_LIBS" ] ; then possible bashism in configure.ac line 47 (test -a/-o): if test [ -n "$PKG_CPPFLAGS" -o -n "$PKG_LIBS" ] ; then possible bashism in configure.ac line 87 (test -a/-o): if test [ -n "$GLPK_INCLUDE" -a -n "$GLPK_LIB" ] ; then possible bashism in configure.ac line 113 (test -a/-o): if test [ -d "/usr/include" -o -d "/usr/local/include" ] ; then possible bashism in configure.ac line 119 (test -a/-o): if test [ -d "/usr/local/lib" -o -d "/usr/local/lib64" -o -d "/usr/lib" -o -d "/usr/lib64"] ; then possible bashism in configure.ac line 148 (test -a/-o): if test [ -d "$prefix/lib" -o -d "$prefix/lib64" ] ; then possible bashism in configure.ac line 160 (test -a/-o): dnl # if test [ -d "$prefix/include" -a -d "$prefix/lib" ] ; then Flavors: r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.3.4
Check: re-building of vignette outputs
Result: NOTE Error(s) in re-building vignettes: --- re-building ‘glpk-gmpl-intro.Rnw’ using Sweave using GLPK version 5.0 Reading model section from /Volumes/Builds/packages/big-sur-x86_64/results/4.3/glpkAPI.Rcheck/glpkAPI/extdata/transport.mod... Reading data section from /Volumes/Builds/packages/big-sur-x86_64/results/4.3/glpkAPI.Rcheck/glpkAPI/extdata/transport.mod... 62 lines were read Generating cost... Generating supply... Generating demand... Model has been successfully generated GLPK Simplex Optimizer 5.0 6 rows, 6 columns, 18 non-zeros 0: obj = 0.000000000e+00 inf = 9.000e+02 (3) 4: obj = 1.561500000e+02 inf = 0.000e+00 (0) * 5: obj = 1.536750000e+02 inf = 0.000e+00 (0) OPTIMAL LP SOLUTION FOUND GLPK Simplex Optimizer 5.0 6 rows, 6 columns, 18 non-zeros 0: obj = 0.000000000e+00 inf = 9.000e+02 (3) 4: obj = 1.545750000e+02 inf = 0.000e+00 (0) * 5: obj = 1.536750000e+02 inf = 0.000e+00 (0) OPTIMAL LP SOLUTION FOUND Writing basic solution to 'transout.api'... GLPK Simplex Optimizer 5.0 6 rows, 6 columns, 18 non-zeros * 5: obj = 1.512000000e+02 inf = 0.000e+00 (0) OPTIMAL LP SOLUTION FOUND --- finished re-building ‘glpk-gmpl-intro.Rnw’ --- re-building ‘glpkAPI.Rnw’ using Sweave using GLPK version 5.0 GLPK Simplex Optimizer 5.0 3 rows, 3 columns, 9 non-zeros * 0: obj = -0.000000000e+00 inf = 0.000e+00 (3) * 2: obj = 7.333333333e+02 inf = 0.000e+00 (0) OPTIMAL LP SOLUTION FOUND Writing basic solution to 'sol.txt'... Writing problem data to 'prob.lp'... 11 lines were written Reading problem data from 'prob.lp'... 3 rows, 3 columns, 9 non-zeros 11 lines were read glpkConstants package:glpkAPI R Documentation _<08>C_<08>o_<08>n_<08>s_<08>t_<08>a_<08>n_<08>t_<08>s, _<08>R_<08>e_<08>t_<08>u_<08>r_<08>n _<08>a_<08>n_<08>d _<08>S_<08>t_<08>a_<08>t_<08>u_<08>s _<08>C_<08>o_<08>d_<08>e_<08>s _<08>o_<08>f _<08>G_<08>L_<08>P_<08>K _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: This is a list containing constants used by GLPK. Cunsult the glpk manual for more information, in praticular for the control parameters. _<08>C_<08>o_<08>n_<08>t_<08>r_<08>o_<08>l _<08>P_<08>a_<08>r_<08>a_<08>m_<08>e_<08>t_<08>e_<08>r_<08>s: _Simplex_ ‘MSG_LEV <- 101’ Message level for terminal output (default: ‘GLP_MSG_ALL’). ‘METH <- 102’ Simplex method option (default: ‘GLP_PRIMAL’). ‘PRICING <- 103’ Pricing technique (default: ‘GLP_PT_PSE’). ‘R_TEST <- 104’ Ratio test technique (default: ‘GLP_RT_HAR’). ‘IT_LIM <- 105’ Simplex iteration limit (default: ‘INT_MAX’). ‘TM_LIM <- 106’ Searching time limit, in milliseconds (default: ‘INT_MAX’). ‘OUT_FRQ <- 107’ Output frequency, in iterations (default: ‘500’). ‘OUT_DLY <- 108’ Output delay, in milliseconds (default: ‘0’). ‘PRESOLVE <- 109’ LP presolver option (default: ‘GLP_OFF’). ‘TOL_BND <- 201’ Tolerance used to check if the basic solution is primal feasible (default: ‘1e-7’). ‘TOL_DJ <- 202’ Tolerance used to check if the basic solution is dual feasible (default: ‘1e-7’). ‘TOL_PIV <- 203’ Tolerance used to choose eligble pivotal elements of the simplex table (default: ‘1e-10’). ‘OBJ_LL <- 204’ Lower limit of the objective function (default: ‘-DBL_MAX’). ‘OBJ_UL <- 205’ Upper limit of the objective function (default: ‘DBL_MAX’). The exact simplex method uses only the parameters ‘IT_LIM’ and ‘TM_LIM’. _Interior_ ‘MSG_LEV <- 101’ Message level for terminal output (default: ‘GLP_MSG_ALL’). ‘ORD_ALG <- 301’ Ordering algorithm used prior to Cholesky factorization (default: ‘GLP_ORD_AMD’). _MIP_ ‘MSG_LEV <- 101’ Message level for terminal output (default: ‘GLP_MSG_ALL’). ‘TM_LIM <- 106’ Searching time limit, in milliseconds (default: ‘INT_MAX’). ‘OUT_FRQ <- 107’ Output frequency, in iterations (default: ‘5000’). ‘OUT_DLY <- 108’ Output delay, in milliseconds (default: ‘10000’). ‘PRESOLVE <- 109’ MIP presolver option (default: ‘GLP_OFF’). ‘BR_TECH <- 601’ Branching technique option (default: ‘GLP_BR_DTH’). ‘BT_TECH <- 602’ Backtracking technique option (default: ‘GLP_BT_BLB’). ‘PP_TECH <- 603’ Preprocessing technique option (default: ‘GLP_PP_ALL’). ‘FP_HEUR <- 604’ Feasibility pump heuristic option (default: ‘GLP_OFF’). ‘GMI_CUTS <- 605’ Gomory's mixed integer cut option (default: ‘GLP_OFF’). ‘MIR_CUTS <- 606’ Mixed integer rounding (MIR) cut option (default: ‘GLP_OFF’). ‘COV_CUTS <- 607’ Mixed cover cut option (default: ‘GLP_OFF’). ‘CLQ_CUTS <- 608’ Clique cut option (default: ‘GLP_OFF’). ‘CB_SIZE <- 609’ The number of extra (up to 256) bytes allocated for each node of the branch-and-bound tree to store application-specific data. On creating a node these bytes are initialized by binary zeros (default: ‘0’). ‘BINARIZE <- 610’ LP presolver option (default: ‘GLP_OFF’). ‘CB_FUNC <- 651’ Use a user defined callback routine ‘glpkCallback’ which is written in the file ‘glpkCallback.c’. This file should be edited according to the users requirements. If set to ‘GLP_ON’, the callback routine defined there is used (default: ‘NULL’). ‘TOL_INT <- 701’ Absolute tolerance used to check if optimal solution to the current LP relaxation is integer feasible (default: ‘1e-5’). ‘TOL_OBJ <- 702’ Relative tolerance used to check if the objective value in optimal solution to the current LP relaxation is not better than in the best known inte- ger feasible solution (default: ‘1e-7’). ‘MIP_GAP <- 703’ The relative mip gap tolerance. If the relative mip gap for currently known best integer feasible solution falls below this tolerance, the solver terminates the search. This allows obtainig suboptimal integer feasible solutions if solving the problem to optimality takes too long time (default: ‘0.0’). _Basis Factorization_ ‘TYPE <- 401’ Basis factorization type (default: ‘GLP_BF_FT’). ‘LU_SIZE <- 402’ Initial size of the Sparse Vector Area (default: ‘0’). ‘PIV_LIM <- 403’ computing LU-factorization of the basis matrix (default: ‘4’). ‘SUHL <- 404’ computing LU-factorization of the basis matrix (default: ‘GLP_ON’). ‘NFS_MAX <- 405’ Maximal number of additional row-like factors (default: ‘100’). ‘NRS_MAX <- 406’ Maximal number of additional rows and columns (default: ‘100’). ‘RS_SIZE <- 407’ Initial size of the Sparse Vector Area (default: ‘0’). ‘PIV_TOL <- 501’ Threshold pivoting (Markowitz) tolerance (default: ‘0.10’). ‘EPS_TOL <- 502’ Epsilon tolerance (default: ‘1e-15’). ‘MAX_GRO <- 503’ Maximal growth of elements of factor U (default: ‘1e+10’). ‘UPD_TOL <- 504’ Update tolerance (default: ‘1e-6’). _<08>L_<08>P/_<08>M_<08>I_<08>P _<08>p_<08>r_<08>o_<08>b_<08>l_<08>e_<08>m _<08>o_<08>b_<08>j_<08>e_<08>c_<08>t: _optimization direction flag_ ‘GLP_MIN <- 1’ minimization ‘GLP_MAX <- 2’ maximization _kind of structural variable_ ‘GLP_CV <- 1’ continuous variable ‘GLP_IV <- 2’ integer variable ‘GLP_BV <- 3’ binary variable _type of auxiliary/structural variable_ ‘GLP_FR <- 1’ free variable ‘GLP_LO <- 2’ variable with lower bound ‘GLP_UP <- 3’ variable with upper bound ‘GLP_DB <- 4’ double-bounded variable ‘GLP_FX <- 5’ fixed variable _status of auxiliary/structural variable_ ‘GLP_BS <- 1’ basic variable ‘GLP_NL <- 2’ non-basic variable on lower bound ‘GLP_NU <- 3’ non-basic variable on upper bound ‘GLP_NF <- 4’ non-basic free variable ‘GLP_NS <- 5’ non-basic fixed variable _scaling options_ ‘GLP_SF_GM <- 0x01’ perform geometric mean scaling ‘GLP_SF_EQ <- 0x10’ perform equilibration scaling ‘GLP_SF_2N <- 0x20’ round scale factors to power of two ‘GLP_SF_SKIP <- 0x40’ skip if problem is well scaled ‘GLP_SF_AUTO <- 0x80’ choose scaling options automatically _solution indicator_ ‘GLP_SOL <- 1’ basic solution ‘GLP_IPT <- 2’ interior-point solution ‘GLP_MIP <- 3’ mixed integer solution _solution status_ ‘GLP_UNDEF <- 1’ solution is undefined ‘GLP_FEAS <- 2’ solution is feasible ‘GLP_INFEAS <- 3’ solution is infeasible ‘GLP_NOFEAS <- 4’ no feasible solution exists ‘GLP_OPT <- 5’ solution is optimal ‘GLP_UNBND <- 6’ solution is unbounded _<08>b_<08>a_<08>s_<08>i_<08>s _<08>f_<08>a_<08>c_<08>t_<08>o_<08>r_<08>i_<08>z_<08>a_<08>t_<08>i_<08>o_<08>n _<08>c_<08>o_<08>n_<08>t_<08>r_<08>o_<08>l _<08>p_<08>a_<08>r_<08>a_<08>m_<08>e_<08>t_<08>e_<08>r_<08>s: _type_ ‘GLP_BF_FT <- 0x01’ LUF + Forrest-Tomlin ‘GLP_BF_BG <- 0x02’ LUF + Schur compl. + Bartels-Golub ‘GLP_BF_GR <- 0x03’ LUF + Schur compl. + Givens rotation ‘GLP_BF_LUF <- 0x00’ plain LU-factorization ‘GLP_BF_BTF <- 0x10’ block triangular LU-factorization _<08>s_<08>i_<08>m_<08>p_<08>l_<08>e_<08>x _<08>m_<08>e_<08>t_<08>h_<08>o_<08>d _<08>c_<08>o_<08>n_<08>t_<08>r_<08>o_<08>l _<08>p_<08>a_<08>r_<08>a_<08>m_<08>e_<08>t_<08>e_<08>r_<08>s: _msg_lev_ message level: ‘GLP_MSG_OFF <- 0’ no output ‘GLP_MSG_ERR <- 1’ warning and error messages only ‘GLP_MSG_ON <- 2’ normal output ‘GLP_MSG_ALL <- 3’ full output ‘GLP_MSG_DBG <- 4’ debug output _meth_ simplex method option: ‘GLP_PRIMAL <- 1’ use primal simplex ‘GLP_DUALP <- 2’ use dual; if it fails, use primal ‘GLP_DUAL <- 3’ use dual simplex _pricing_ pricing technique: ‘GLP_PT_STD <- 0x11’ standard (Dantzig rule) ‘GLP_PT_PSE <- 0x22’ projected steepest edge _r_test_ ratio test technique: ‘GLP_RT_STD <- 0x11’ standard (textbook) ‘GLP_RT_HAR <- 0x22’ two-pass Harris' ratio test _<08>i_<08>n_<08>t_<08>e_<08>r_<08>i_<08>o_<08>r-_<08>p_<08>o_<08>i_<08>n_<08>t _<08>s_<08>o_<08>l_<08>v_<08>e_<08>r _<08>c_<08>o_<08>n_<08>t_<08>r_<08>o_<08>l _<08>p_<08>a_<08>r_<08>a_<08>m_<08>e_<08>t_<08>e_<08>r_<08>s: _ord_alg_ ordering algorithm: ‘GLP_ORD_NONE <- 0’ natural (original) ordering ‘GLP_ORD_QMD <- 1’ quotient minimum degree (QMD) ‘GLP_ORD_AMD <- 2’ approx. minimum degree (AMD) ‘GLP_ORD_SYMAMD <- 3’ approx. minimum degree (SYMAMD) _<08>i_<08>n_<08>t_<08>e_<08>g_<08>e_<08>r _<08>o_<08>p_<08>t_<08>i_<08>m_<08>i_<08>z_<08>e_<08>r _<08>c_<08>o_<08>n_<08>t_<08>r_<08>o_<08>l _<08>p_<08>a_<08>r_<08>a_<08>m_<08>e_<08>t_<08>e_<08>r_<08>s: _br_tech_ branching technique: ‘GLP_BR_FFV <- 1’ first fractional variable ‘GLP_BR_LFV <- 2’ last fractional variable ‘GLP_BR_MFV <- 3’ most fractional variable ‘GLP_BR_DTH <- 4’ heuristic by Driebeck and Tomlin ‘GLP_BR_HPC <- 5’ hybrid pseudocost _bt_tech_ backtracking technique: ‘GLP_BT_DFS <- 1’ depth first search ‘GLP_BT_BFS <- 2’ breadth first search ‘GLP_BT_BLB <- 3’ best local bound ‘GLP_BT_BPH <- 4’ best projection heuristic _pp_tech_ preprocessing technique: ‘GLP_PP_NONE <- 0’ disable preprocessing ‘GLP_PP_ROOT <- 1’ preprocessing only on root level ‘GLP_PP_ALL <- 2’ preprocessing on all levels _<08>a_<08>d_<08>d_<08>i_<08>t_<08>i_<08>o_<08>n_<08>a_<08>l _<08>r_<08>o_<08>w _<08>a_<08>t_<08>t_<08>r_<08>i_<08>b_<08>u_<08>t_<08>e_<08>s: _the row origin flag_ ‘GLP_RF_REG <- 0’ regular constraint ‘GLP_RF_LAZY <- 1’ "lazy" constraint ‘GLP_RF_CUT <- 2’ cutting plane constraint _the row class descriptor_ klass ‘GLP_RF_GMI <- 1’ Gomory's mixed integer cut ‘GLP_RF_MIR <- 2’ mixed integer rounding cut ‘GLP_RF_COV <- 3’ mixed cover cut ‘GLP_RF_CLQ <- 4’ clique cut _<08>e_<08>n_<08>a_<08>b_<08>l_<08>e/_<08>d_<08>i_<08>s_<08>a_<08>b_<08>l_<08>e _<08>f_<08>l_<08>a_<08>g: ‘GLP_ON <- 1’ enable something ‘GLP_OFF <- 0’ disable something _<08>r_<08>e_<08>a_<08>s_<08>o_<08>n _<08>c_<08>o_<08>d_<08>e_<08>s: ‘GLP_IROWGEN <- 0x01’ request for row generation ‘GLP_IBINGO <- 0x02’ better integer solution found ‘GLP_IHEUR <- 0x03’ request for heuristic solution ‘GLP_ICUTGEN <- 0x04’ request for cut generation ‘GLP_IBRANCH <- 0x05’ request for branching ‘GLP_ISELECT <- 0x06’ request for subproblem selection ‘GLP_IPREPRO <- 0x07’ request for preprocessing _<08>b_<08>r_<08>a_<08>n_<08>c_<08>h _<08>s_<08>e_<08>l_<08>e_<08>c_<08>t_<08>i_<08>o_<08>n _<08>i_<08>n_<08>d_<08>i_<08>c_<08>a_<08>t_<08>o_<08>r: ‘GLP_NO_BRNCH <- 0’ select no branch ‘GLP_DN_BRNCH <- 1’ select down-branch ‘GLP_UP_BRNCH <- 2’ select up-branch _<08>r_<08>e_<08>t_<08>u_<08>r_<08>n _<08>c_<08>o_<08>d_<08>e_<08>s: ‘GLP_EBADB <- 0x01’ invalid basis ‘GLP_ESING <- 0x02’ singular matrix ‘GLP_ECOND <- 0x03’ ill-conditioned matrix ‘GLP_EBOUND <- 0x04’ invalid bounds ‘GLP_EFAIL <- 0x05’ solver failed ‘GLP_EOBJLL <- 0x06’ objective lower limit reached ‘GLP_EOBJUL <- 0x07’ objective upper limit reached ‘GLP_EITLIM <- 0x08’ iteration limit exceeded ‘GLP_ETMLIM <- 0x09’ time limit exceeded ‘GLP_ENOPFS <- 0x0A’ no primal feasible solution ‘GLP_ENODFS <- 0x0B’ no dual feasible solution ‘GLP_EROOT <- 0x0C’ root LP optimum not provided ‘GLP_ESTOP <- 0x0D’ search terminated by application ‘GLP_EMIPGAP <- 0x0E’ relative mip gap tolerance reached ‘GLP_ENOFEAS <- 0x0F’ no primal/dual feasible solution ‘GLP_ENOCVG <- 0x10’ no convergence ‘GLP_EINSTAB <- 0x11’ numerical instability ‘GLP_EDATA <- 0x12’ invalid data ‘GLP_ERANGE <- 0x13’ result out of range _<08>c_<08>o_<08>n_<08>d_<08>i_<08>t_<08>i_<08>o_<08>n _<08>i_<08>n_<08>d_<08>i_<08>c_<08>a_<08>t_<08>o_<08>r: ‘GLP_KKT_PE <- 1’ primal equalities ‘GLP_KKT_PB <- 2’ primal bounds ‘GLP_KKT_DE <- 3’ dual equalities ‘GLP_KKT_DB <- 4’ dual bounds ‘GLP_KKT_CS <- 5’ complementary slackness _<08>M_<08>P_<08>S _<08>f_<08>i_<08>l_<08>e _<08>f_<08>o_<08>r_<08>m_<08>a_<08>t: ‘GLP_MPS_DECK <- 1’ fixed (ancient) ‘GLP_MPS_FILE <- 2’ free (modern) _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Gabriel Gelius-Dietrich <geliudie@uni-duesseldorf.de> Maintainer: Mayo Roettger <mayo.roettger@hhu.de> _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Based on the package ‘glpk’ by Lopaka Lee. The GNU GLPK home page at <http://www.gnu.org/software/glpk/glpk.html>. _<08>S_<08>e_<08>e _<08>A_<08>l_<08>s_<08>o: ‘status_codeGLPK’, ‘return_codeGLPK’ addColsGLPK package:glpkAPI R Documentation _<08>A_<08>d_<08>d _<08>C_<08>o_<08>l_<08>u_<08>m_<08>n_<08>s _<08>t_<08>o _<08>a _<08>G_<08>L_<08>P_<08>K _<08>P_<08>r_<08>o_<08>b_<08>l_<08>e_<08>m _<08>O_<08>b_<08>j_<08>e_<08>c_<08>t _<08>D_<08>e_<08>s_<08>c_<08>r_<08>i_<08>p_<08>t_<08>i_<08>o_<08>n: Low level interface function to the GLPK function ‘glp_add_cols’. Consult the GLPK documentation for more detailed information. _<08>U_<08>s_<08>a_<08>g_<08>e: addColsGLPK(lp, ncols) _<08>A_<08>r_<08>g_<08>u_<08>m_<08>e_<08>n_<08>t_<08>s: lp: An object of class ‘"glpkPtr"’ as returned by ‘initProbGLPK’. This is basically a pointer to a GLPK problem object. ncols: The number of columns to add. _<08>D_<08>e_<08>t_<08>a_<08>i_<08>l_<08>s: Interface to the C function ‘addCols’ which calls the GLPK function ‘glp_add_cols’. _<08>V_<08>a_<08>l_<08>u_<08>e: The ordinal number of the first new column added to the problem object is returned. _<08>A_<08>u_<08>t_<08>h_<08>o_<08>r(_<08>s): Gabriel Gelius-Dietrich <geliudie@uni-duesseldorf.de> Maintainer: Mayo Roettger <mayo.roettger@hhu.de> _<08>R_<08>e_<08>f_<08>e_<08>r_<08>e_<08>n_<08>c_<08>e_<08>s: Based on the package ‘glpk’ by Lopaka Lee The GNU GLPK home page at <http://www.gnu.org/software/glpk/glpk.html> Error: processing vignette 'glpkAPI.Rnw' failed with diagnostics: Running 'texi2dvi' on 'glpkAPI.tex' failed. LaTeX errors: ! LaTeX Error: File `mparhack.sty' not found. Type X to quit or <RETURN> to proceed, or enter new name. (Default extension: sty) ! Emergency stop. <read *> l.8 ^^M ! ==> Fatal error occurred, no output PDF file produced! --- failed re-building ‘glpkAPI.Rnw’ SUMMARY: processing the following file failed: ‘glpkAPI.Rnw’ Error: Vignette re-building failed. Execution halted Flavor: r-oldrel-macos-x86_64