* using log directory 'd:/Rcompile/CRANpkg/local/4.4/Renvlp.Rcheck' * using R version 4.4.2 (2024-10-31 ucrt) * using platform: x86_64-w64-mingw32 * R was compiled by gcc.exe (GCC) 13.3.0 GNU Fortran (GCC) 13.3.0 * running under: Windows Server 2022 x64 (build 20348) * using session charset: UTF-8 * checking for file 'Renvlp/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'Renvlp' version '3.4.5' * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'Renvlp' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... [0s] OK * checking whether the package can be loaded with stated dependencies ... [0s] OK * checking whether the package can be unloaded cleanly ... [0s] OK * checking whether the namespace can be loaded with stated dependencies ... [0s] OK * checking whether the namespace can be unloaded cleanly ... [0s] OK * checking loading without being on the library search path ... [0s] OK * checking use of S3 registration ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... [26s] OK * checking Rd files ... [3s] NOTE checkRd: (-1) testcoef.env.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with nonconstant errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.env.tcond.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model with t-distributed errors. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.genv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta[[i]] R = A, versus Ha: L beta[[i]] R != A. The beta is estimated by the groupwise envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta[[i]] = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.henv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the heteroscedastic envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.logit.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.penv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta1 R = A, versus Ha: L beta1 R != A. The beta is estimated by the partial envelope model. If L = Ir, R = Ip1 and A = 0, then the test is equivalent to the standard F test on if beta1 = 0. The test statistics used is vec(L beta1 R - A) hat{Sigma}^{-1} vec(L beta1 R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta1 R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces; missing escapes or markup? 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.pois.env.Rd:18: Lost braces 18 | This function tests for hypothesis H0: L beta = A, versus Ha: L beta != A. The beta is estimated by the envelope model in predictor space. If L = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta - A) hat{Sigma}^{-1} vec(L beta - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta - A). The reference distribution is chi-squared distribution with degrees of freedom d1. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.rrenv.apweights.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the reduced rank envelope model that accommodates nonconstant error variance. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.senv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model. If L = Ir, R = Ip and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.stenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the simultaneous envelope model. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.sxenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the scaled envelope model in the predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces; missing escapes or markup? 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) testcoef.xenv.Rd:19: Lost braces 19 | This function tests for hypothesis H0: L beta R = A, versus Ha: L beta R != A. The beta is estimated by the envelope model in predictor space. If L = Ip, R = Ir and A = 0, then the test is equivalent to the standard F test on if beta = 0. The test statistic used is vec(L beta R - A) hat{Sigma}^{-1} vec(L beta R - A)^{T}, where beta is the envelope estimator and hat{Sigma} is the estimated asymptotic covariance of vec(L beta R - A). The reference distribution is chi-squared distribution with degrees of freedom d1 * d2. | ^ checkRd: (-1) xenv.Rd:28: Lost braces; missing escapes or markup? 28 | \item{eta}{The estimated eta. According to the envelope parameterization, beta = Gamma * Omega^{-1} * eta.} | ^ * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... [0s] OK * checking data for ASCII and uncompressed saves ... OK * checking examples ... [53s] OK * checking PDF version of manual ... [24s] OK * checking HTML version of manual ... [20s] OK * DONE Status: 1 NOTE